Quantitative determination of low molecular weight antioxidants and their effects on different antioxidants in chicken blood plasma

Abstract

Antioxidants in the body are in balance, and form a network that protects living organisms against oxidative stress. To prove this hypothesis, we developed suitable methods for assessing the amount of antioxidants and their antioxidant activity in the chickens’ plasma, which enable us to explain the overall anti-oxidant status of the animals during the controlled industrial raise. The effects of exogenous coenzyme Q10, and α-lipoic acid on the reduction of oxidative stress in the animal body were assessed. The physical and the health conditions of chickens during the raising period of 40 days were followed. The benefits of additives were estimated through the measured concentrations of selected low molecular weight antioxi-dants (coenzyme Q10, α-lipoic acid, α-tocopherol, lutein and zeaxathin) and antioxidant enzymes (super-oxide dismutase, glutathione reductase), cholesterol and glucose in plasma and measurements of total antioxidant capacity. Quantitative analyses of selected substances were done with different chromatographic, spectroscopic and electrometric methods. The addition of antioxidants has positive effects on the acts of antioxidant network.

Share and Cite:

Krizman, P. , Smidovnik, A. , Wondra, A. , Cernelic, K. , Kotnik, D. , Krizman, M. , Prosek, M. , Volk, M. , Holcman, A. and Svete, A. (2012) Quantitative determination of low molecular weight antioxidants and their effects on different antioxidants in chicken blood plasma. Journal of Biomedical Science and Engineering, 5, 743-754. doi: 10.4236/jbise.2012.512093.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Davies, K.J. (1995) Oxidative stress: The paradox of aerobic life. Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives, 61, 1-31.
[2] Halliwell, B. (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312-322. doi:10.1104/pp.106.077073
[3] Sies, H. (1997) Oxidative stress: Oxidants and antioxi- dants. Experimental Physiology, 82, 291-295.
[4] Packer, L. and Colman, C. (1999) The Antioxidant Mira- cle. John Wiley & Sons, New York, 1-30.
[5] Bhagavan, H.N. and Chopra, R.K. (2006) Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radical Research, 40, 445-453. doi:10.1080/10715760600617843
[6] Ernster, L. and Dallner, G. (1995) Biochemical, Physiological and Medical Aspects of Ubiquinone Function. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1271, 195-204. doi:10.1016/0925-4439(95)00028-3
[7] Crane, F.L. (2001) Biochemical functions of coenzyme Q(10). Journal of the American College of Nutrition, 20, 591-598.
[8] Bentinger, M., Brismar, K. and Dallner, G. (2007) The antioxidant role of coenzyme Q. Mitochondrion, 7, S41- S50. doi:10.1016/j.mito.2007.02.006
[9] Lenaz, G., Fato, R., Formiggini, G. and Genova, M.L. (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion, 7, S8-S33. doi:10.1016/j.mito.2007.03.009
[10] Olson, R.E. and Rudney, H. (1983) Biosynthesis of Ubiquinone. Vitamins and Hormones, 40, 1-43. doi:10.1016/S0083-6729(08)60431-8
[11] Pro?ek, M., ?midovnik, A., Fir Milivojevi?, M., Stra?i?ar, M., Golc-Wondra, A., Andren?ek, S. and ?mitek, J. (2005) New water-soluble form of coenzyme Q10 in the form of an inclusion complex with beta-cyclodextrin, process, of preparing, and use of thereof. Patent No. 21783.
[12] Pro?ek, M., Butinar, J., Lukanc, B., Fir Milivojevi?, M., Milivojevi?, L., Kriman, M. and ?midovnik, A. (2008) Bio-availability of water-soluble CoQ10 in beagle dogs. Journal of Pharmaceutical and Biomedical Analysis, 47, 918-922. doi:10.1016/j.jpba.2008.04.007
[13] ?mitek, J., ?midovnik, A., Fir, M., Pro?ek, M., Zmitek, K., Walczak, J. and Pravst, I. (2008) Relative bioavailability of two forms of a novel water-soluble coenzyme Q10. Annals of Nutrition and Metabolism, 52, 281-287. doi:10.1159/000129661
[14] Packer, L., Witt, E.H. and Tritschler, H.J. (1995) Al- pha-Lipoic Acid as a Biological Antioxidant. Free Radical Biology and Medicine, 19, 227-250. doi:10.1016/0891-5849(95)00017-R
[15] Biewenga, G.P., Haenen, G.R. and Bast, A. (1997) The pharmacology of the antioxidant lipoic acid. General Pharmacology, 29, 315-331. doi:10.1016/S0306-3623(96)00474-0
[16] Kagan, V.E., Shvedova, A., Serbinova, E., Khan, S., Swan- son, C., Powell, R. and Packer, L. (1992) Dihydrolipoic Acid—A universal antioxidant both in the membrane and in the aqueous phase—Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochemical Pharmacology, 44, 1637-1649. doi:10.1016/0006-2952(92)90482-X
[17] Jazbec, P., ?midovnik, A., Puklavec, M., Kri?man, M., ?ribar, J., Milivojevi?, L. and Pro?ek, M. (2009) HPTLC and HPLC-MS Quantification of Coenzyme Q10 and Cholesterol in Fractionated Chicken-Breast Tissue. Jour- nal of Planar Chromatography-Modern Tlc, 22, 395-398. doi:10.1556/JPC.22.2009.6.1
[18] Jazbec K.P. (2011) Influence of added CoQ10 on its content in chicken tissues and reducing oxidative stress during raising. Ph.D. Thesis, University of Ljubljana, Ljubl-jana.
[19] Weber, C., Jakobsen, T.S., Mortensen, S.A., Paulsen, G. and Holmer, G. (1994) Antioxidative effect of dietary coenzyme Q10 in human blood-plasma. International Journal for Vitamin and Nutrition Research, 64, 311-315.
[20] Navari-Izzo, F., Quartacci, M.F. and Sgherri, C. (2002) Lipoic acid: A unique antioxidant in the detoxification of activated oxygen species. Plant Physiology and Biochemistry, 40, 463-470. doi:10.1016/S0981-9428(02)01407-9
[21] Islam, M.T. (2009) Antioxidant activities of dithiol alphalipoic acid. Bangladesh Journal of Medical Science, 8, 3- 6. doi:10.3329/bjms.v8i3.3982
[22] Littarru, G.P. and Tiano, L. (2007) Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Molecular Biotechnology, 37, 31-37. doi:10.1007/s12033-007-0052-y
[23] Geng, A.L., Guo, Y.M. and Yang, Y. (2004) Reduction of ascites mortality in broilers by coenzyme Q10. Poultry Science, 83, 1587-1593.
[24] Geng, A.L. and Guo, Y.M. (2005) Effects of dietary co-enzyme Q10 supplementation on hepatic mitochondrial function and the activities of respiratory chain-related enzymes in ascitic broiler chickens. British Poultry Science, 46, 626-634. doi:10.1080/00071660500273292
[25] Kamisoyama, H., Honda, K., Kitaguchi, K. and Hase-gawa, S. (2010) Transfer of Dietary Coenzyme Q10 into the Egg Yolk of Laying Hens. Journal of Poultry Science, 47, 28-33. doi:10.2141/jpsa.009037
[26] Hamano, Y., Sugawara, S., Kamota, Y. and Nagai, E. (1999) Involvement of lipoic acid in plasma metabolites, hepatic oxygen consumption, and metabolic response to a beta-agonist in broiler chickens. British Journal of Nutrition, 82, 497-503.
[27] Kotnik, D., ?midovnik, A., Jazbec-Kri?man, P., Kri?man, M. and Pro?ek, M. (2011) Direct analysis of carbohy- drates in animal plasma by ion chromatography coupled with mass spectrometry and pulsed amperometric detection for use as a non-invasive diagnostic tool. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 879, 3700-3706. doi:10.1016/j.jchromb.2011.10.010
[28] Mosca, F., Fattorini, D., Bompadre, S. and Littarru, G.P. (2002) Assay of coenzyme Q10 in plasma by a single dilution step. Analytical Biochemistry, 305, 49-54. doi:10.1006/abio.2002.5653
[29] Karpinska, J., Mikoluc, B., Motkowski, R. and Piotro- wska-Jastrzebska, J. (2006) HPLC method for simulta- neous determination of retinol, alpha-tocopherol and co-enzyme Q10 in human plasma. Journal of Pharmaceutical and Biomedical Analysis, 42, 232-236. doi:10.1016/j.jpba.2006.03.037
[30] Chang, H.T., New, L.S., Neo, A.H., Goh, C.W., Browne, E.R. and Chan, E.C.Y. (2010) A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue. Journal of Pharmaceutical and Biomedical Analysis, 51, 754-757. doi:10.1016/j.jpba.2009.09.028
[31] Paglia, D.E. and Valentine, W.N. (1967) Studies on the quantitative and qualitative characterization of erythro-cyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-169.
[32] McCord, J.M. and Fridovich, I. (1969) The utility of su- peroxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. Journal of Biological Chemistry, 244, 6056-6063.
[33] Kotnik, D. (2011) Optimization of the pulsed amperometric detection and determination of the selected carbo-hydrates with ion chromatography. Ph.D. Thesis, University of Ljubljana, Ljubljana.
[34] Kotnik, D., ?midovnik, A., Jazbec-Kri?man, P., Kri?man, M. and Pro?ek, M. (2011) Overview of the development and application of the hyphenated techniques in nutriational analysis. Acta Chimica Slovenica, 58, 203-211.
[35] Tang, P.H., Miles, M.V., DeGrauw, A., Hershey, A. and Pesce, A. (2001) HPLC analysis of reduced and oxidized coenzyme Q10 in human plasma. Clinical Chemistry, 47, 256-265.
[36] Menke, T., Niklowitz, P., Adam, S., Weber, M., Schluter, B. and Andler, W. (2000) Simultaneous detection of ubiquinol-10, ubiquinone-10, and tocopherols in human plasma microsamples and macrosamples as a marker of oxidative damage in neonates and infants. Analytical Biochemistry, 282, 209-217. doi:10.1006/abio.2000.4579
[37] Hagen, T.M., Vinarsky, V., Wehr, C.M. and Ames, B.N. (2000) (R)-alpha-Lipoic acid reverses the age-associated increase in susceptibility of hepatocytes to tert-butylhy- droperoxide both in vitro and in vivo. Antioxidants & Redox Signaling, 2, 473-483. doi:10.1089/15230860050192251
[38] Koppenol, W.H. and Butler, J. (1985) Energetics of interconversion reactions of oxyradicals. Advances in Free Radical Biology & Medicine, 1, 91-131. doi:10.1016/8755-9668(85)90005-5
[39] Buettner, G.R. and Jurkiewicz, B.A. (1996) Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiation Research, 145, 532-541. doi:10.2307/3579271
[40] Bentz, B.G., Diaz, J., Ring, T.A., Wade, M., Kennington, K., Burnett, D.M., McClane, R. and Fitzpatrick, F.A. (2010) Fiberoptic resonance Raman spectroscopy to measure carotenoid oxidative breakdown in live tissues. Cancer Prevention Research, 3, 529-538. doi:10.1158/1940-6207.CAPR-09-0157

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.