Negative thermal diffusivity enhancement in semiconductor nanofluids

Abstract

Colloidal suspensions of semiconductor InP@ZnS nanoparticles were prepared using single-step procedure without precursor injection. Thermal properties of toluene containing InP@ZnS semiconductor with different sizes (3.1, 4.2, and 4.6 nm) were measured by mode mismatched dualbeam thermal lens technique. This was done in order to measure the effect of the presence of semiconductor nanoparticles and size on the nanofluids thermal diffusivity. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (toluene, containing InP@ZnS semiconductor nanoparticles) it seems to be strongly dependent on the presence of semiconductor nanoparticles and particles size. For the case of nanofluids consisting of InP@ZnS nanoparticles dispersed in toluene, it was observed a decrease in the thermal diffusivity. Such behavior differs from other nanofluids, in the sense that they had shown positive thermal diffusivity enhancement. The minimum diffusivity was achieved for the nanoparticles with lowest size. Plausible explanation for such nanofluids low thermal diffusivity with semiconductor nanoparticles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HRTEM), and energy dispersive spectroscopy (EDS) techniques were used to characterize the InP@ZnS nanoparticles.

Share and Cite:

González-Araoz, M. , Sánchez-Ramírez, J. , Jiménez-Pérez, J. , Chigo-Anota, E. , Herrera-Pérez, J. and Mendoza-Álvarez, J. (2012) Negative thermal diffusivity enhancement in semiconductor nanofluids. Natural Science, 4, 1022-1028. doi: 10.4236/ns.2012.412131.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Choi, S.U.S. (1995) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, 99-105.
[2] Kaka?, S. and Pramuanjaroenkij, A. (2009) Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187-3196.
[3] Wang, X.-Q. and Mujumdar, A.S. (2008) A Review on nanofluids, Part I: Theoretical and numerical investigations. Brazilian Journal of Chemical Engineering, 25, 613-630. doi:10.1590/S0104-66322008000400001
[4] Wang, X.-Q. and Mujumdar, A.S. (2008) A Review on nanofluids, Part II: Experiments and applications. Brazilian Journal of Chemical Engineering, 25, 631-648. doi:10.1590/S0104-66322008000400002
[5] Wang, X.-Q. and Mujumdar, A.S. (2007) Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46, 1-19. doi:10.1016/j.ijthermalsci.2006.06.010
[6] Kwek, D., Crivoi, A. and Duan, F. (2010) Effects of temperature and particle size on the thermal property measurements of Al2O3-water nanofluids. Journal of Chemical & Engineering Data, 55, 5690-5695. doi:10.1021/je1006407
[7] Shima, P.D., Philip, J. and Raj, B. (2010) Synthesis of aqueous and nonaqueous iron oxide nanofluids and study of temperature dependence on thermal conductivity and viscosity. The Journal of Physical Chemistry C, 114, 18825-18833. doi:10.1021/jp107447q
[8] Xie, H. and Chen, L. (2011) Review on the preparation and thermal performances of carbon nanotube contained nanofluids. Journal of Chemical & Engineering Data, 56, 1030-1041. doi:10.1021/je101026j
[9] Baby, T.T. and Sundara, R. (2011) Synthesis and transport properties of metal oxide docorated graphene dispersed nanofluids. The Journal of Physical Chemistry C, 115, 8527-8533. doi:10.1021/jp200273g
[10] Amiri, A., Shanbedi, M., Eshghi, H., Heris, S. Z. and Baniadam, M. (2012) Highly dispersed multiwalled carbon in water and experimental investigation of the thermophysical properties. The Journal of Physical Chemistry C, 116, 3369-3375. doi:10.1021/jp210484a
[11] Paul, G., Chopkar, M., Manna, I. and Das, P.K. (2010) Techniques for measuring the thermal conductivity of nanofluids: A review. Renewable & Sustainable Energy Reviews, 14, 1913-1924. doi:10.1016/j.rser.2010.03.017
[12] Jiménez-Pérez, J.L., Sánchez-Ramírez, J.F., Cruz-Orea, A., Gutiérrez-Fuentes, R., Cornejo-Monroy, D. and LópezMu?oz, G.A. (2010) Heat transfer enhanced in water containing TiO2 nanospheres. Journal Nano Research, 9, 55-60.
[13] Jiménez-Pérez, J.L., Cruz-Orea, A., Sánchez-Ramírez, J.F., Sánchez-Sinencio, F, Martínez-Pérez, L. and López-Mu?oz, G.A. (2009) Thermal characterization of nanofluids with different solvents. International Journal of Thermophysics, 30, 1227-1233. doi:10.1007/s10765-009-0623-1
[14] Gutiérrez-Fuentes, R., Pescador-Rojas, J.A., Jiménez-Pérez, J.L., Sánchez-Ramírez, J.F., Cruz-Orea, A. and Mendozaálvarez, J. G. (2008) Study of thermal diffusivity of nano fluids with bimetallic nanoparticles with Au(core)/Ag (shell) structure. Applied Surface Science, 255, 781-783. doi:10.1016/j.apsusc.2008.07.023
[15] Gutiérrez-Fuentes, R., Sánchez-Ramírez, J.F., JiménezPérez, J.L., Pescador-Rojas, J.A., Ramón-Gallegos, E. and Cruz-Orea. A. (2007) Thermal diffusivity determination of protoporphyrin IX solution mixed with gold metallic nanoparticles. International Journal of Thermo- physics, 28, 1048-1055. doi:10.1007/s10765-007-0225-8
[16] Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Maris, H.J., Merlin, R. and Phillpot, S.R. (2003) Nanoscale thermal transport. Journal Applied Physics, 93, 793.
[17] Andrey L.R. (2008 ) Semiconductor nanocrystal quantum dots. Synthesis, Assembly, Spectroscopy and Applications, Springer Wien, New York.
[18] El Sayed, M.A. (2004) Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Accounts of Chemical Research, 37, 326-333. doi:10.1021/ar020204f
[19] Walling, M.A., Novak, J.A. and Shepard, J.R.E. (2010) Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences, 10, 441-491. doi:10.3390/ijms10020441
[20] Hussain, S., Won, N., Nam, J., Bang, J., Chung, H. and Kim, S. (2009) One-pot fabrication of high quality InP/ ZnS (Core/Shell) quantum dots and their applications to cellular imaging. ChemPhysChem, 10, 1466-1470.
[21] Liu, W. and Asheghi, M. (2004) Phonon-boundary scaterring in ultrathin single-crystal silicon layers. Applied Physics Letters, 84, 3819-3821. doi:10.1063/1.1741039
[22] Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A. (2003) Thermal conductivity of individual silicon nanowire. Applied Physics Letters, 83, 2934.
[23] Bindhu, C.V., Harilal, S.S., Nampoori, V.P.N. and Villabhan, C.P.G. (1998) Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Optical Engineering, 37, 2791-2794. doi:10.1117/1.601825
[24] Li, L. and Reiss, P. (2008) One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. Journal of the American Chemical Society, 130, 11588-11589. doi:10.1021/ja803687e
[25] Sánchez-Ramírez, J.F., Jiménez-Pérez, J.L., Carbajal-Valdez, R., Cruz-Orea, A. and Gutiérrez-Fuentes, R. (2006) Thermal diffusivity measurements in fluids containing metallic nanoparticles using transient thermal lens. International Journal of Thermophysics, 27, 1181-1188. doi:10.1007/s10765-006-0084-8
[26] Shen, J., Lowe, R.D. and Snook, R. D. (1992) A model for cw laser induced mode-mismached dua-beam thermal lens. Chemical Physics, 165, 385-396. doi:10.1016/0301-0104(92)87053-C
[27] Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D. and Klimov, V.I. (2007) Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. Journal of the American Chemical Society, 129, 11708- 11719. doi:10.1021/ja068351m
[28] Burda, C., Chen, X., Narayanan, R. And El-Sayed, M. A. (2005) Chemistry and Properties of Nano crystals of Different Shapes. Chemical Review, 105, 1025-1102.
[29] Weast, R.C. (1987) CRC handbook of chemistry and physics. CRC Press, Boca Raton. doi:10.1021/cr030063a
[30] Ponomareva, I., Srivastava, D. and Menon, M. (2007) Thermal conductivity in Thin silicon nanowires: Phonon confinement effect. Nano Letter, 7, 1155-1159. doi:10.1021/nl062823d
[31] Balandin, A. and Wang, K. (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Physical Review B, 58, 1544-1549. doi:10.1103/PhysRevB.58.1544
[32] Khitun, A., Balandin, A. and Wang, K.L. (1999) Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattice and Microstructures, 26, 181-193. doi:10.1006/spmi.1999.0772
[33] Li, D., Wu, Y.Y., Kim, P., Shi, L., Yang, P. and Majumdar, A. (2003) Thermal conductivity of individual silicon nanowires. Applied Physics Letters. 83, 2934-2936. doi:10.1063/1.1616981
[34] Teja, A.S., Beck, M.P., Yuan, Y. and Warrier, P. (2010) The limiting behavior of the thermal conductivity of nanoparticles and nanofluids. Journal of Applied Physics, 107, 114319.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.