Excited State Interaction of Laser Dyes and Silver Nanoparticles in Different Media

Abstract

Quenching the fluorescence of the dyes 3-(4’-dimethylaminophenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (DMAPrP), 3- (4’-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) and 3-(4’-dimethylaminophenyl)-1-(2-thienyl)prop- 2-en-1-one (DMATP) has been investigated in the presence of silver cation and silver nanoparticles in different media. The results of the quenching experiments were analyzed using Stern-Volmer equation. Quenching the fluorescence of the dyes decreased with increasing medium viscosity. The Stern-Volmer constant (KSV) values in the absence and presence of ethylene glycol show that the quenching efficiencies decrease as the medium viscosity increases indicating that the quenching process is a diffusion-controlled process, and this is consistent with a dynamic-type quenching.

Share and Cite:

El-Sayed, Y. and Gaber, M. (2012) Excited State Interaction of Laser Dyes and Silver Nanoparticles in Different Media. Advances in Nanoparticles, 1, 54-60. doi: 10.4236/anp.2012.13008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. M. Kohler, L. Abahmane, J. Wagner, J. Albert and G. Mayer, “Preparation of Metal Nanoparticles with Varied Composition for Catalytical Applications in Microreactors,” Chemical Engineering Science, Vol. 63, No. 20, 2008, pp. 5048- 5055. Hdoi:/10.1016/j.ces.2007.11.038
[2] Z. L. Jiang, C. Y. Liu and L. W. Sun, “Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres,” The Journal of Physical Chemistry B, Vol. 109, No. 5, 2005, pp. 1730-1735. Hdoi:/10.1021/jp046032gH
[3] K. H. Cho, J. E. Park, T. Osaka and S. G. Park, “Optimization of the Sputter-Deposited Platinum Cathode for a Direct Methanol Fuel Cell,” Electrochimica Acta, Vol. 51, No. 5, 2005, pp. 956-960. Hdoi:/10.1016/j.electacta.2005.04.071
[4] [4] A. Petica, S. Gavriliu, M. Lungu, N. Buruntea and C. Panzaru, “Colloidal Silver Solutions with Antimicrobial Properties.” Materials Science and Engineering: B, Vol. 152, No. 1-3, 2008, pp. 22-27.
[5] P. Gupta, M. Bajpai and S. K. Bajpai, “Investigation of Antibacterial Properties of Silver Nanoparticle-Loaded Poly (Acrylamide-co-Itaconic Acid)-Grafted Cotton Fabric,” Journal of Cotton Science, Vol. 12, No. 3, 2008, pp. 280-286.
[6] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Caurri, A. Agostiano and D. Laub, “Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution,” Journal of the American Chemical Society, Vol. 126, No. 12, 2004, pp. 3868-3879. Hdoi:/10.1021/ja0395846
[7] L. Armelao, G. Bottaro, R. Campstrini, S. Gialanella and M. Ischia, “Synthesis and Structural Evolution of Mesoporous Silica-Silver Nanocomposites,” Nanotechnology, Vol. 18, No. 15, 2007, p. 155606. Hdoi:/10.1088/0957-4484/18/15/155606
[8] A. P. V. Kamat, “Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles,” The Journal of Physical Chemistry B, Vol. 106, No. 32, 2002, pp. 7729-7744. Hdoi:/10.1021/jp0209289H
[9] J. R. Lakowicz, “Radiative Decay Engineering: Biophysical and Biomedical Applications,” Analytical Biochemistry, Vol. 298, No. 1, 2001, pp. 1-24. Hdoi:/10.1006/abio.2001.5377
[10] J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski and I. Gryczynski, “Radiative Decay Engineering: 2 Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer,” Analytical Biochemistry, Vol. 301, No. 2, 2002, pp. 261-277. Hdoi:/10.1006/abio.2001.5503
[11] J. R. Lakowicz, “Radiative Decay Engineering 3 Surface Plasmon-Coupled Directional Emission,” Analytical Biochemistry, Vol. 324, No. 2, 2004, pp. 153-169. Hdoi:/10.1016/j.ab.2003.09.039
[12] K. Aslan, I. Gryczynski, J. Malicka, J. R. Lakowicz and C. D. Geddes, “Metal-Enhanced Fluorescence: An Emerging Tool in Biotechnology,” Current Opinion in Biotechnology, Vol. 16, No. 1, 2005, pp. 55-62. Hdoi:/10.1016/j.copbio.2005.01.001
[13] K. Aslan, P. Holley, L. Davies, J. R. Lakowicz and C. D. Geddes, “Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing,” Journal of the American Chemical Society, Vol. 127, No. 34, 2005, pp. 12115-12121. Hdoi:/10.1021/ja052739k
[14] A. Al-Kady. S, M. Gaber, M. M. Hussein and E. M. Ebeid, “Fluorescence Enhancement of Coumarin Thiourea Derivatives by Hg2+, Ag+, and Silver Nanoparticles.” Journal of Physical Chemistry A, Vol. 113, No. 34, 2009, pp. 9474-9484. doi:/10.1021/jp905566z
[15] S. Pramanik, S. C. Bhattacharya and T. Imae, “Fluorescence Quenching of 3,7-Diamino-2,8-dimethyl-5-phenyl Phenazinium chloride by AgCl and Ag nanoparticles,” Journal of Luminescence, Vol. 126, No. 1, 2007, pp. 155-159. doi:/10.1016/j.jlumin.2006.06.008
[16] I. S. Lee and H. Suzuki, “Quenching Dynamics Promoted by Silver Nanoparticles,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 195, No. 2-3, 2008, pp. 254-260. Hdoi:/10.1016/j.jphotochem.2007.10.009
[17] M. A. Babu, N. Shakya, P. Prathipati, S. G. Kaskhedikar and A. K. Saxena, “Development of 3D-QSAR Models for 5-Lipoxygenase Antagonists: Chalcones,” Bioorganic & Medicinal Chemistry, Vol. 10, No. 12, 2002, pp. 4035-4041. Hdoi:/10.1016/S0968-0896(02)00313-9
[18] S. Kumar, E. Hager, C. Pettit, H. Gurulingappa, N. E. Davidson and S. R. Khan, “Design, Synthesis, and Evaluation of Novel Boronic-Chalcone Derivatives as Antitumor Agents,” Journal of Medicinal Chemistry, Vol. 46, No. 14, 2003, pp. 2813-2815. Hdoi:/10.1021/jm030213+
[19] M. Liu, P. Wilairat, C. L. Simon, A. L. Tan and M. Go, “Structure–Activity Relationships of Antileishmanial and Antimalarial Chalcones,” Bioorganic & Medicinal Chemistry, Vol. 11, No. 13, 2003, pp. 2729-2738. Hdoi:/10.1016/S0968-0896(03)00233-5H
[20] M. S. Karthikeyan, B. S. Holla and N. S. Kumari, “Synthesis and Antimicrobial Studies on Novel Chloro-Fluorine Containing Hydroxy Pyrazolines,” European Journal of Medicinal Chemistry, Vol. 42, No. 1, 2007, pp. 30-36. Hdoi:/10.1016/j.ejmech.2006.07.011
[21] T. A. Fayed, “A novel Chalcone-Analogue As An Optical Sensor Based on Ground and Excited States Intramolecular Charge Transfer: A Combined Experimental and Theoretical Study,” Chemical Physics, Vol. 324, No. 2-3, 2006, pp. 631-638. Hdoi:/10.1016/j.chemphys.2005.11.039
[22] B. Delavaux-Nicot, J. Maynadie, D. Lavabre and S. Fery-Forgues, “Ca2+ vs. Ba2+ Electrochemical Detection by Two Disubstituted Ferrocenyl Chalcone Chemosensors. Study of the Ligand-Metal interactions in CH3CN,” Journal of Organometallic Chemistry, Vol. 692, No. 4, 2007, pp. 874-886.
[23] M. Gaber, S. A. El-Daly, T. A. Fayed and Y. S. Y. El-Sayed, “Photophysical Properties, Laser Activity and Photoreactivity of a Heteroaryl Chalcone: A Model OF Solvatochromic Fluorophore,” Optics & Laser Technology, Vol. 40, No. 3, 2008, pp. 528-537. Hdoi:/10.1016/j.optlastec.2007.08.006
[24] S. A. El-Daly, M. Gaber, Y. S. El-Sayed, “Photophysical Parameters and Laser Performance of 3-(4’-Dimethyl- aminophenyl)-1-(2-Furanyl)prop-2-en-1-One (DMAFP): A New Laser Dye,” Optics & Laser Technology, Vol. 41, No. 6, 2009, pp. 727-733.
[25] Y. S. El-Sayed, S. A. El-Daly, M. Gaber, “Spectral Behavior and Laser Activity of 3-(4’-Dimethylamino phenyl)- 1-(1H-pyrrol-2-yl)prop-2-en-1-one (DMAPrP). A New Laser Dye,” Optics & Laser Technology, Vol. 42, No. 2, 2010, pp. 397-402.
[26] W. H. Melhuish, “Modified Technique for Determining the Wavelength-Sensitivity Curve of a Pectrofluorimeter,” Applied Optics, Vol. 14, No. 1, 1975, pp. 26-27.
[27] W. H. Melhuish, “Calibration of Spectrofluorimeters for Measuring Corrected Emission Spectra,” The Journal of the Optical Society of America, Vol. 52, No. 11, 1962, p. 1256. Hdoi:/10.1364/JOSA.52.001256
[28] W. H. Melhuish. “A Standard Fluorescence Spectrum for Calibrating Spectro-Fluorophotometers,” Journal of Physical Chemistry, Vol. 64, No. 6, 1960, pp. 762-764. Hdoi:/10.1021/j100835a014
[29] B. Marciniak, “Does Cu(acac)2 Quench Benzene Fluorescence?: A Physical Chemistry Experiment,” Journal of Chemical Education, Vol. 63, No. 11, 1986, pp. 998-1000. Hdoi:/10.1021/ed063p998
[30] W. Cai, Y. Fan, Z. Jiang and J. Yao, “A Highly Sensitive and Selective Resonance Scattering Spectral Assay for Potassium Ion Based on Aptamer and Nanosilver Aggregation Reactions,” Talanta, Vol. 81, No. 4-5, 2010, pp. 1810-1815. Hdoi:/10.1016/j.talanta.2010.03.046
[31] P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” Journal of Physical Chemistry, Vol. 86, No. 17, 1982, pp. 3391- 3395. Hdoi:/10.1021/j100214a025
[32] S. K. Ghosh, A. Pal, S. Kundu, S. Nath and T. Pal, “Fluorescence Quenching of 1-Methylaminopyrene near Gold Nanoparticles: Size Regime Dependence of the Small Metallic Particles,” Chemical Physics Letters, Vol. 395, No. 4-6, 2004, pp. 366-372. Hdoi:/10.1016/j.cplett.2004.08.016
[33] C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco and A. J. Heeger, “Beyond Superquenching: Hyper- Efficient Energy Transfer from Conjugated Polymers to Gold Nanoparticles,” Applied Physics, Vol. 100, No. 11, 2003, pp. 6297-6301.
[34] P. Avouris and B. N. J. Persson, “Excited States at Metal Surfaces and Their Non-Radiative Relaxation,” Journal of Physical Chemistry, Vol. 88, No. 5, 1984, pp. 837-848. Hdoi:/10.1021/j150649a004
[35] B. I. Ipe, K. G. Thomas, S. Barazzouk, S. Hotchandani and P. V. Kamat, “Photoinduced Charge Separation in a Fluorophore-Gold Nanoassembly,” Journal of Physical Chemistry B, Vol. 106, No. 1, 2002, pp. 18-21. Hdoi:/10.1021/jp0134695
[36] S. K. Mehta, N. Bala and S. Sharma, “Thermodynamics of Aggregation of Tweens in the Presence of Diclofenac Sodium,” Colloids and Surfaces A, Vol. 268, No. 1-3, 2005, pp. 90-98. Hdoi:/10.1016/j.colsurfa.2005.06.013
[37] V. Suratkar and S. Mahapatra, “Solubilization Site of Organic Perfume Molecules in Sodium Dodecyl Sulfate Micelles: New Insights from Proton NMR Studies,” Journal of Colloid and Interface Science, Vol. 225, No. 1, 2000, pp. 32-38. Hdoi:/10.1006/jcis.2000.6718
[38] V. J. Sovilj and L. B. Petrovic, “Influence of Molecular Characterissssstics of Nonionic Cellulose Ethers on Their Interaction with Ionic Surfactant Investigated by Conductometry,” Colloid & Polymer Science, Vol. 284, No. 3, 2005, pp. 334-339. Hdoi:/10.1007/s00396-005-1376-4
[39] L. Ceraulo, F. Filizzola, A. Longo, A. Ruggirello and V. T. Liveri, “Physicochemical Investigation of the Solubi- Lization of Ytterbium Nitrate in AOT Reverse Micelles and Liquid Crystals,” Colloid & Polymer Science, Vol. 284, No. 10, 2006, p. 1485. Hdoi:/10.1007/s00396-006-1485-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.