Diagnostics, rehabilitation and models of Parkinson’s disease

Abstract

Diagnostics and rehabilitation of Parkinson’s disease (PD) presents the current information pertaining to etiology, early biomarkers for diagnostics, novel methods to evaluate symptoms, multidisciplinary rehabilitation, new applications of brain imaging and invasive methods to the study of PD. Researchers have only recently begun to focus on the non-motor symptoms of PD, which are poorly recognized and inadequately treated by clinicians. The non-motor symptoms of PD have a significant impact on patient quality of life and mortality, and include cognitive impairments, autonomic, gastrointestinal, and sensory symptoms. Indepth discussion of the use of imaging tools to study disease mechanisms is also provided, with emphasis on the abnormal network organization in parkinsonism. Deep brain stimulation management is a paradigm-shifting therapy for PD, essential tremor and dystonia. In the recent years, new approaches of early diagnostics, training programmes and treatments have vastly improved the lives of people with PD, substantially reducing symptoms and significantly delaying disability. PD results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular mechanisms that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models have been important in elucidating the molecular cas-cade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.

Share and Cite:

Dushanova, J. (2012) Diagnostics, rehabilitation and models of Parkinson’s disease. Health, 4, 1200-1217. doi: 10.4236/health.2012.431178.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Marino, S., Sessa, E., Di Lorenzo, G., Lanzafame, P. and Scullica, G., et al. (2007) Quantitative analysis of pursuit ocular movements in Parkinson’s disease by using a video-based eye tracking system. European Neurology, 58, 193- 197. doi:10.1159/000107939
[2] Marino, S., Lanzafame, P., Sessa, E., Bramanti, A. and Bramanti, P. (2010) The effect of L-Dopa administration on pursuit ocular movements in suspected Parkinson’s disease. Neurological Sciences, 31, 381-385. doi:10.1007/s10072-009-0180-1
[3] Cass, W.A., Grondin, R., Andersen, A.H., Zhang, Z., Hardy, P.A., Hussey-Andersen, L.K., Rayens, W.S., Gerhardt, G.A. and Gash, D.M. (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiology of Aging, 28, 258-271. doi:10.1016/j.neurobiolaging.2005.12.010
[4] Schuff, N. (2009) Potential role of high-field MRI for studies in Parkin-son’s disease. Movement Disorders, 24, S684-S690. doi:10.1002/mds.22647
[5] Karagulle Kendi, A.T., Lehericy, S., Luciana, M., Ugurbil, K. and Tuite, P. (2008) Altered diffusion in the frontal lobe in Parkinson’s disease. American Journal of Neuroradiology, 38, 501-505. doi:10.3174/ajnr.A0850
[6] Hummel, T., Witt, M., Reichmann, H., Welge-Luessen, A. and Haehner, A. (2010) Immunohistochemical, volumetric, and functional neuroim-aging studies in patients with idiopathic Parkinson’s Disease. Journal of the Neuro-logical Sciences, 298, 119-122. doi:10.1016/j.jns.2009.08.026
[7] Wattendorf, E., Welge-Lüssen, A., Fiedler, K., Bilecen, D. and Wolfensberger, M., et al. (2009) Olfactory impair- ment predicts brain atrophy in Parkinson’s disease. The Journal of Neuroscience, 29, 15410-15413. doi:10.1523/JNEUROSCI.1909-09.2009
[8] Welge-Lüssen, A., Wattendorf, E., Schwerdtfeger, U., Fuhr, P., Bilecen, D., et al. (2009) Olfactory induced brain activity in Parkinson’s Disease relates to the expression of eventrelated potentials—An FMRI study. Neuroscience, 162, 537-543. doi:10.1016/j.neuroscience.2009.04.050
[9] Lukhanina, E.P., Karaban, I.N., Chivliklii, M.A., Pil’kevich, N.A. and Berezetskaya, N.M. (2010) Electromyographic manifestations of hereditary signs of extrapiramidal insufficiency. Neuro-physiology, 42, 39-49. doi:10.1007/s11062-010-9129-5
[10] Robichaud, J. A., Pfann, K.D. and Leurgans, S., et al. (2009) Variability of EMG patterns: A potential neuro- physiological marker of Parkinson’s disease? Clinical Neurophysiology, 120, 390-397. doi:10.1016/j.clinph.2008.10.015
[11] Meigal, A.I., Rissanen, S., Tarvainen, M.P., Karjalainen, P.A., Iudina-Vassel, I.A., Airaksinen, O. and Kankaanp??, M. (2009) Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. Journal of Electromyography and Kinesiology, 19, e206-e213. doi:10.1016/j.jelekin.2008.02.008
[12] Talebinejad, M., Chan, A.D. and Miri, A. (2010) Fatigue estimation using a novel multi-fractal detrended fluctuation analysis-based approach. Journal of Electromyography and Kinesiology, 20, 433-439. doi:10.1016/j.jelekin.2009.06.002
[13] Ikeda, A., Shibasaki, H., Kaji, R., Terada, K., Nagamine, T., Honda, M. and Kimura, J. (1997) Dissociation between contingent negative variation (CNV) and Bereits chaftspotential (BP) in patients with Par-kinsonism. Electroencephalography and Clinical Neurophysiology, 102, 142-151. doi:10.1016/S0921-884X(96)95067-5
[14] Schmiedt, C., Meistrowitz, A., Schwendemann, G., Herr-mann, M. and Basar-Eroglu, C. (2005) Theta and alpha oscillations reflect differences in memory strategy and visual discrimination performance in patients with Parkinson’s disease. Neuroscience Letters, 388, 138-143. doi:10.1016/j.neulet.2005.06.049
[15] Dushanova, J., Philipova, D., Nikolova., G. (2009) Eventrelated synchroniza-tion/desynchronization during discrimination task conditions in patients with Parkinson’s disease. Cellular and Molecular Neurobiology, 29, 971-980. doi:10.1007/s10571-009-9384-4
[16] Dushanova, J., Philipova, D. and Nikolova, G. (2010) Beta and gamma frequency-range abnormalities in parkinsonian patients under cognitive sen-sorimotor task. Jour- nal of the Neurological Sciences, 293, 51-58. doi:10.1016/j.jns.2010.03.008
[17] Pavese, N. and Brooks, D.J. (2009) Imaging neurodegeneration in Parkinson’s Disease. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1792, 722-729. doi:10.1016/j.bbadis.2008.10.003
[18] Ferrer, I., Martinez, A., Blanco, R., Dalfó, E. and Carmona, M. (2011) Neuropathology of sporadic Parkinson’s disease before the appearance of Parkinsonism: Preclini- cal Parkinson’s disease. Journal of Neutral Transmission, 118, 821-839. doi:10.1007/s00702-010-0482-8
[19] Wu, Y., Le, W. and Jankovic, J. (2011) Preclinical bio-markers of Parkinson’s disease. Archieves of Neurology, 68, 22-30. doi:10.1001/archneurol.2010.321
[20] Jenkins, B.G., Sanchez-Pernaute, R., Brownell, A.L., Chen, Y.C. and Isacson, O. (2004) Mapping dopamine function in primates using pharmacologic magnetic resonance imaging. The Journal of Neuroscience, 24, 9553-9560. doi:10.1523/JNEUROSCI.1558-04.2004
[21] Zhang, Z., An-dersen, A.H., Ai, Y., Loveland, A., Hardy, P.A., Gerhardt, G.A. and Gash, D.M. (2006) Assessing nigrostriatal dysfunctions by pharmacological MRI in parkinsonian rhesus macaques. Neuroimage, 33, 636-643. doi:10.1016/j.neuroimage.2006.07.004
[22] Luan, L., Ding, F., Ai, Y., Andersen, A., Hardy, P., Forman, E., Gerhardt, G.A., Gash, D.M., Grondin, R. and Zhang, Z. (2008) Pharmacological MRI (phMRI) monitoring of treatment in hemiparkinsonian rhesus monkeys. Cell Trans- plant, 17, 417-425.
[23] Rasmussen Jr., I. (2010) Psychopharmacological MRI. Acta Neuropsychiatrica, 22, 38-39. doi:10.1111/j.1601-5215.2009.00432.x
[24] Kim, Y., Kim, J., Ito, K., Lim, H.-S., Cheong, H.-K., Kim, J.Y., Shin, Y.C., Kim, K.S. and Moon, Y. (1999) Idio- pathic Parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neuro- toxicology, 20, 249-252.
[25] Guilarte, T.R., McGlothan, J.L., Degaonkar, M., Chen, M.K., Barker, P.B., Syversen, T. and Schneider, J.S. (2006) Evidence for cor-tical dysfunction and widespread man- ganese accumulation in the nonhuman primate brain following chronic manganese exposure: A 1H-MRS and MRI study. Toxicological Sciences, 94, 351-358. doi:10.1093/toxsci/kfl106
[26] Jiang, Y.M., Zheng, W., Long, L.L., Zhao, W.J., Li, X.R., Mo, X.A., Lu, J., Fu, X., Li, W., Liu, S., Long, Q., Huang, J. and Pira, E. (2007) Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: Search for biomarkers of manganese exposure. Neurotoxicology, 28, 126-135. doi:10.1016/j.neuro.2006.08.005
[27] Guilarte, T.R., Burton, N.C., McGlothan, J.L., Vernia, T., Zhou, Y., Alexander, M., Pham, L., Griswold, M., Wong, D.F., Syversen, T. and Schneider, J.S. (2008) Impairment of nigrostriatal dopamine neuro-transmission by manggnese is mediated by presynaptic mechanism(s): Implications to manganese-induced Parkin-sonism. Journal of Neurochemistry, 107, 1236-1247. doi:10.1111/j.1471-4159.2008.05695.x
[28] Chang, Y., Kim, Y., Woo, S.-T., Song, H.-J., Kim, S.H., Lee, H., Kwon, Y.J., Ahn, J.H., Park, S.-J., Chung, I.-S. and Jeong, K.S. (2009) High signal intensity on magnetic resonance imaging is a better pre-dictor of neurobehav- ioral performances than blood manganese in asympto- matic welders. Neuro Toxicology, 30, 555-563. doi:10.1016/j.neuro.2009.04.002
[29] Chang, Y., Woo, S.-T., Lee, J.-J., Song, H-J., Lee, H.J., Yoo, D.-S., Kim, S.H., Lee, H., Kwon, Y.J., Ahn, H.J., Ahn, J.H., Park, S.-J., Weon, Y.C., Chung, I.-S., Jeong, K.S. and Kim, Y. (2009) Neurochemical changes in welders revealed by proton magnetic resonance spectroscopy. Neuro Toxicology, 30, 950-957. doi:10.1016/j.neuro.2009.07.008
[30] Chang, Y., Lee, J.J., Seo, J.H., Song, H.J., Kim, J.H., Bae, S.J., Ahn, J.H., Park, S.J., Jeong, K.S., Kwon. Y.J., Kim, S.H. and Kim, Y. (2010) Altered working memory process in the manganese-exposed brain. Neuroimage, 53, 1279- 1285. doi:10.1016/j.neuroimage.2010.07.001
[31] Dydak, U., Jiang, Y.M., Long, L.L., Zhu, H., Chen, J., Li, W.M., Edden, R.A., Hu, S., Fu, X., Long, Z., Mo, X.A., Meier, D., Harezlak, J., Aschner, M., Murdoch, J.B. and Zheng, W. (2011) In vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environmental Health Perspectives, 119, 219-224. doi:10.1289/ehp.1002192
[32] Kim, Y., Jeong, K.S., Song, H.-J., Lee, J.-J., Seo, J.-H., Kim, G.-C., Lee, H.J., Kim, H.J., Ahn, J.-H., Park, S.-J., Kim, S.H., Kwon, Y.J. and Chang, Y. (2011) Altered white matter microstructural integrity revealed by voxel- wise analysis of diffusion tensor imaging in welders with manganese exposure. Neuro Toxicology, 32, 100-109. doi:10.1016/j.neuro.2010.11.004
[33] Speziali, M. and Orvini, E. (2003) Metals distribution and regionalization in the brain. In: Zatta, P., Ed., Metal Ions and Neurodegenerative Disorders, World Scientific Publishing Co., New Jersey, 15-65. doi:10.1142/9789812796691_0002
[34] Qureshi, G.A., Qureshi, A.A., Memon, S.A. and Parvez, S.H. (2006) Impact of selenium, iron, copper and zinc in on/off Parkinson’s patients on L-dopa therapy. Journal of Neural Transmission, 71, 229-236. doi:10.1007/978-3-211-33328-0_24
[35] Tan, X., Luo, Y., Pan, J., Huang, B. and Wang P.Q. (2007) Serum Cu, Fe, Mn, and Zn levels and Parkinson’s disease. Parkinsonism & Related Disorders, 13, S134. doi:10.1016/S1353-8020(08)70745-4
[36] Speziali, M. and Di Casa, M. (2009) Copper, iron, zinc and other element concen-trations in cerebrospinal fluid of Parkinson’s disease pa-tients—Considerations on litera- ture data. Journal of Trace Elements and Electrolytes, 26, 171-176.
[37] Ongkana, N., Tohno, S., Tohno, Y., Suwannahoy, P., Mahakkanukrauh, P., Azuma, C. and Minami, T. (2010) Age-related changes of ele-ments in the anterior commissures and the relationships among their elements. Biological Trace Element Research, 135, 86-97. doi:10.1007/s12011-009-8496-5
[38] Tohno, Y., Tohno, S., Ongkana, N., Suwannahoy, P., Azuma, C., Minami, T. and Mahakkanukrauh, P. (2010) Age-related changes of elements and relationships among elements in human hippocampus, dentate gyrus, and fornix. Biological Trace Element Research, 138, 42-52. doi:10.1007/s12011-009-8605-5
[39] Colman, K., Koerts, J., van Beilen, M., Leenders, K.L. and Bastiaanse, R. (2006) The role of cognitive mechanisms in sentence comprehension in dutch speaking Parkinson’s disease patients: Preliminary data. Brain and Language, 99, 109-110. doi:10.1016/j.bandl.2006.06.069
[40] Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M. and Nazir, T.A. (2008) Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46, 743-756. doi:10.1016/j.neuropsychologia.2007.10.007
[41] Colman, K.S.F., Koerts, J., van Beilen, M., Leenders, K.L., Post, W. J. and Bastiaanse, R. (2009) The impact of executive functions on verb production in patients with Parkinson’s Disease. Cortex, 45, 930-942. doi:10.1016/j.cortex.2008.12.010
[42] McKinlay, A., Dalrym-ple-Alford, J.C., Grace, R.C. and Roger, D. (2009) The effect of attentional set-shifting, working memory, and processing speed on pragmatic language functioning in Parkinson’s Disease. European Journal of Cognitive Psychology, 21, 330-346. doi:10.1080/09541440802281266
[43] Kandori, A., Yokoe, M., Sakoda, S., Abe, K., Miyashita, T., Oe, H., Naritomi, H., Ogata, K. and Tsukada, K. (2004) Quantitative magnetic detection of finger movements in patients with Parkinson’s disease, Neuro-science Research, 49, 253-260. doi:10.1016/j.neures.2004.03.004
[44] Endo, T., Okuno, R., Yokoe, M., Akazawa, K. and Sakoda, S. (2009) A novel method for systematic analysis of rigidity in Parkinson’s disease. Movement Disorders, 24, 2218-2224. doi:10.1002/mds.22752
[45] Yokoe, M., Okuno, R., Hamasaki, T., Kurachi, Y., Akazawa, K. and Sakoda, S. (2009) Opening velocity, a novel pa- rameter, for finger tapping test in patients with Parkinson’s Disease, Parkinsonism & Related Disorders, 15, 440-444. doi:10.1016/j.parkreldis.2008.11.003
[46] Yuceturk, A.V., Yilmaz, H., Egrilmez, M., Karaca, S. (2002) Voice analysis and videolaryngostroboscopy in patients with Parkinson’s disease. European Archives of Otorhinolaryngol, 259, 290-293.
[47] Harel, B., Cannizzaro, M., Snyder, P.J. (2004) Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cognition, 56, 24-29. doi:10.1016/j.bandc.2004.05.002
[48] Sapir, S., Spielman, J., Ramig, L., Story, B., Fox, C. (2007) Effects of intensive voice treatment (LSVT?) on vowel articulation in dysarthric individuals with idio-pathic Parkinson’s disease: Acoustic and perceptual find- ings. Journal of Speech, Language, and Hearing Research, 50, 899-912. doi:10.1044/1092-4388(2007/064)
[49] Yamamoto, Y., Struzik, Z.R., Soma, R., Ohashi, K. and Kwak, S. (2005) Noisy vestibular stimulation improves autonomic and motor responsiveness in central neuro- degenerative disorders. Annals of Neurology, 58, 175-181. doi:10.1002/ana.20574
[50] Pan, W., Ohashi, K., Yamamoto, Y. and Kwak, S. (2007) Power-law temporal autocorrelation of activity reflects severity of parkinsonism. Movement Disorders, 22, 1308- 1313. doi:10.1002/mds.21527
[51] Pan, W., Soma, R., Kwak, S. and Yamamoto, Y. (2008) Improvement of motor functions by noisy vestibular stimulation in central neurodegenerative disorders. Jour- nal of Neurology, 255, 1657-1661. doi:10.1007/s00415-008-0950-3
[52] Vaugoyeau, M., Viel, S., Assaiante, C., Amblard, B. and Azulay, J.P. (2007) Impaired vertical postural control and proprioceptive integration deficits in Parkinson’s disease. Neuroscience, 146, 852-863. doi:10.1016/j.neuroscience.2007.01.052
[53] Hayashi, R., Aizawa, J., Nagase, H., Ohara, S. (2010) Lateral inclination of the trunk and falling frequency in Parkinson’s disease patients. Electromyography and Cli- nical Neurophysiology, 50, 195-202.
[54] Johnson, A.M., Pollard, C.C., Vernon, P.A., Tomes, J.L. amd Jog, M.S. (2005) Memory perception and strategy use in Parlinson’s disease. Parkinsonism & Related Dis- orders , 1, 111-115. doi:10.1016/j.parkreldis.2004.06.005
[55] Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S. and Hausdorff, J.M. (2005). Dual tasking, gait rhyth- micity, and Parkinson’s disease: Which aspects of gait are attention demanding? European Journal of Neuroscience, 22, 1248-1256. doi:10.1111/j.1460-9568.2005.04298.x
[56] Goebel, S., Mehdorn, H.M. and Leplow, B. (2010) Stra- tegy instruction in Parkinson’s disease: Influence on cog- nitive performance. Neuropsychologia, 48, 574-580. doi:10.1016/j.neuropsychologia.2009.10.020
[57] Aarsland, D., Br?nnick, K. and Fladby, T. (2011) Mild cognitive impairment in Parkinson’s disease. Current Neu- rology and Neuroscience Reports, 11, 371-378. doi:10.1007/s11910-011-0203-1
[58] Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D. (2009) Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Information Technology in Bio- medicine, 13, 864-873. doi:10.1109/TITB.2009.2033471
[59] Tindall, L.R. and Huebner, R.A. (2009) The Impact of an application of telerehabilitation technology on caregiver burden. International Journal of Telerehabilitation, 1, 3-8. doi:10.5195/ijt.2009.5559
[60] Papapetropoulos, S., Heather, K., Scanlo, B.K., Guevara, A., Singer, C. and Levin, B. (2010) Objective quantification of neuromotor symptoms in Parkinson?s disease: Imple- mentation of a portable, computerized measurement tool. Parkinson’s Disease, 760196.
[61] Patel, S., Buckley, T., Rednic, R., McClure, D., Shih, L., Tarsy, D., et al. (2010) A web-based system for home monitoring of patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Biomedical Engi- neering, 58, 831-836.
[62] Westin, J., Dougherty, M., Nyholm, D. and Groth, T. (2010) A home environment test battery for status assessment in patients with advanced Parkinson’s disease. Computer Methods and Programs in Biomedicine, 98, 27-35. doi:10.1016/j.cmpb.2009.08.001
[63] Devos, H., Vandenberghe, W., Nieuwboer, A., Tant, M., Baten, G. and De Weerdt, W. (2007) Predictors of fitness to drive in people with Parkinson’s disease. Neurology, 69,1434-1441. doi:10.1212/01.wnl.0000277640.58685.fc
[64] Cordell, R., Lee, H.C., Granger, A., Vieira, B. and Lee, A.H. (2008) Driving assessment in Parkinson’s disease: A novel predictor of performance. Movement Disorders, 23, 1217-1222. doi:10.1002/mds.21762
[65] Uc, E.Y., Rizzo, M., Johnson, J.E., Dastrup, E., Anderson, S.W. and Dawson, J. (2009) Road safety in drivers with Parkinson’s Disease. Neurology, 73, 2112-2119. doi:10.1212/WNL.0b013e3181c67b77
[66] Uitti, R.J. (2009) Parkinson’s Disease and issues related to driving. Parkinsonism & Related Disorders, 15, S122- S125.
[67] Gobbi, L., Oliveira-Ferreira, M.D., Caetano, M.J., Lirani- Silva, E., Barbieri, F., Stella, F. and Gobbi, S. (2009) Ex- ercise programs improve mobility and balance in people with Parkinson’s disease. Parkinsonism & Related Dis- orders, 15, S49-S52. doi:10.1016/S1353-8020(09)70780-1
[68] Sage, M. and Almeida, Q. (2009) Symptom and gait changes after sensory attention focused exercise vs aerobic training in Parkinson’s disease. Movement Disorders, 24, 1132-1138. doi:10.1002/mds.22469
[69] Tanaka, K., Quadros, A.C., Jr., Santos, R., Stella, F., Gobbi, L. and Gobbi, S. (2009) Benefits of physical exer- cise on executive functions in older people with Parkinson’s Disease. Brain and Cognition, 69, 435-441. doi:10.1016/j.bandc.2008.09.008
[70] Hackney, M. and Earhart, G. (2010) Effects of dance on gait and balance in Parkinson’s disease: A comparison of partnered and nonpartnered dance movement. Neurore- habilitation and Neural Repair, 24, 384-392.
[71] Sage, M. and Almeida, Q. (2010) A positive influence of vision on motor symptoms during sensory attention focused exercise for Parkinson’s Disease. Movement Disorders, 25, 64-69.
[72] Beijer, L., Rietveld, T., Hoskam, V., Geurts, A. and de Swart, B. (2010) Evaluating the feasibility and the potential efficacy of e-learning-based speech therapy for speech training in dysarthric patients with Parkinson’s Disease: A case study. Telemedicine and E-Health, 16, 732-738.
[73] Ellis, T., de Goede, C.J., Feldman, R.G., Wolters, E.C., Kwakkel, G. and Wagenaar, R.C. (2005) Efficacy of a physical therapy program in patients with Parkinson’s di- sease: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 86, 626-632. doi:10.1016/j.apmr.2004.08.008
[74] Lun, V., Pullan, N., Labelle, N., Adams, C. and Sucho- wersky, O. (2005) Comparison of the effects of a self- supervised home exercise program with a physiotherapist supervised exercise program on the motor symptoms of Parkinson’s disease. Movement Disorders, 20, 971-975. doi:10.1002/mds.20475
[75] Keus, S., Bloem, B.R., Hendriks, E., Bredero-Cohen, A. and Munneke, M. (2007) Evidence-based analysis of phy- sical therapy in Parkinson’s disease with recommen- dations for practice and research. Movement Disorders, 22, 451-460. doi:10.1002/mds.21244
[76] Brichetto,G., Pelosin, E., Marchese, R. and Abbruzzese, G. (2006) Evaluation of physical therapy in parkinsonian patients with freezing of gait: A pilot study. Clinical Reha- bilitation, 20, 31-35. doi:10.1191/0269215506cr913oa
[77] Schmitz-Hübsch, T., Pyfer, D., Kielwein, K., Fimmers, R., Klockgether, T. and Wüllner, U. (2006) Qigong exercise for the symptoms of Parkinson’s Disease: A randomized, controlled pilot study. Movement Disorders, 21, 543-548. doi:10.1002/mds.20705
[78] Herman, T., Giladi, N., Gruendlinger, L. and Hausdorff, J.M. (2007) Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: A pilot study. Archives of Physical Medicine and Rehabilitation, 88, 1154-1158. doi:10.1016/j.apmr.2007.05.015
[79] J?bges, E., Spittler-Schneiders, H., Renner, C. and Hum- melsheim, H. (2007) Clinical relevance of rehabilitation programs for patients with idiopathic Parkinson syn- drome II: Symptom-specific therapeutic approaches. Par- kinsonism & Related Disorders, 13, 203-213. doi:10.1016/j.parkreldis.2006.07.018
[80] Takahashi, Y., Osamu, N. and Komeda, T. (2008) De- velopment of a sit-to-stand assistance system. Lecture Notes in Computer Science, 5105, 1277-1284. doi:10.1007/978-3-540-70540-6_191
[81] Costa, J., Valls-Sole, J., Valldeoriola, F., Pech, C. and Rumia, J. (2006) Single subthalamic nucleus deep brain stimuli inhibit the blink reflex in Parkinson’s disease patients. Brain, 129, 1758-1767. doi:10.1093/brain/awl143
[82] Costa, J., Valls-Sole, J., Valldeoriola, F., Rumia, J. and Tolosa, E. (2007) Motor responses of muscles supplied by cranial nerves to subthalamic nucleus deep brain stimuli. Brain, 130, 245-255. doi:10.1093/brain/awl336
[83] Valls-Solé, J., Compta, Y., Costa, J., Valldeoriola, F. and Rumià, J. (2008) Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation. Clinical Neurophysiology,119, 1219-1231. doi:10.1016/j.clinph.2007.12.020
[84] Alessandro, S., Ceravolo, R., Brusa, L., Pierantozzi, M., Costa, A., Galati, S., Placidi, F., Romigi, A., Iani, C., Marzetti, F. and Peppe, A. (2010) Non-motor functions in parkinsonian patients implanted in the pedunculopontine nucleus: Focus on sleep and cognitive domains. Journal of the Neurological Sciences, 289, 44-48. doi:10.1016/j.jns.2009.08.017
[85] Kim, H.J., Jeon, B.S., Paek, S.H., Lee, J.Y., Kim, H.J., Kim, C.K. and Kim, D.G. (2010) Bilateral subthalamic deep brain stimulation in Parkinson disease patients with se- vere tremor. Neurosurgery, 67, 626-632. doi:10.1227/01.NEU.0000374850.98949.D4
[86] Lee, J.Y., Kim, J.W., Lee, J.Y., Lim, Y.H., Kim, C., Kim, D.G., Jeon, B.S. and Paek, S.H. (2010) Is MRI a reliable tool to locate the electrode after deep brain stimulation sur- gery? Comparison study of CT and MRI for the localization of electrodes after DBS. Acta Neurochi- rurgica, 152, 2029-2036. doi:10.1007/s00701-010-0779-2
[87] Paek, S.H., Han, J.H., Lee, J.Y., Kim, C., Jeon, B.S. and Kim, D.G. (2008) Electrode position determined by fused images of preoperative and postoperative magnetic reso- nance imaging and surgical outcome after subthalamic nucleus deep brain stimulation. Neurosurgery, 63, 925- 937. doi:10.1227/01.NEU.0000334045.43940.FB
[88] Cho, Z.H., Min, H.K., Oh, S.H., Han, J.Y., Park, C.W., Chi, J.G., Kim, Y.B., Paek, S.H., Lozano, A.M. and Lee, K.H. (2010) Direct visualization of deep brain stimulation targets in Parkinson’s disease with the use of 7-tesla magnetic resonance imaging. Journal of Neurosurgery, 113, 639-647. doi:10.3171/2010.3.JNS091385
[89] Paek, S.H., Kim, J.W., Lim, Y.H., Kim, M.R., Kim, D.G. and Jeon, B.S. (2010) Data management system in a movement disorder center: Technical report. Stereotactic and Functional Neurosurgery, 88, 216-223. doi:10.1159/000314356
[90] Paek, S.H., Kim, H.J., Yoon, J.Y., Heo, J.H., Kim, C.Y., Kim, M.R., Lim, Y.H., Kim, K.R., Han, J.H., Kim, D.G. and Jeon, B.S. (2011) Fusion image-based programming after subthalamic nucleus deep brain stimulation. World Neurosurgery ,75, 517-524. doi:10.1016/j.wneu.2010.12.003
[91] Tani, N., Saitoh, Y., Kishima, H., Oshino, S., Hatazawa, J., Hashikawa, K. and Yoshimine, T. (2007) Motor cortex stimulation for levodopa-resistant akinesia: Case report. Movement Disorders, 22, 1645-1649. doi:10.1002/mds.21593
[92] Saitoh, Y. and Hosomi, K. (2009) From localization to surgical implantation. In: Canavero, S., Ed., Textbook of Therapeutic Cortical Stimulation, Nova Science Publi- shers, Inc., New York.
[93] Kryzak, T.J., Sperling, J.W., Schleck, C.D. and Cofield, R. H. (2009) Total shoulder arthroplasty in patients with Parkinson’s Disease. Journal of Shoulder and Elbow Surgery, 18, 96-99. doi:10.1016/j.jse.2008.07.010
[94] Kryzak, T.J., Sperling, J.W., Schleck, C.D. and Cofield, R.H. (2010) Hemiarthroplasty for proximal humerus fractures in patients with Parkinson’s Disease. Clinical Orthopaedics and Related Research, 468, 1817-1821. doi:10.1007/s11999-010-1353-1
[95] Greffard, S., Verny, M., Bonnet, A.M., Seilhean, D., Hauw, J.J. and Duyckaerts, C. (2010) A stable proportion of lewy body bearing neurons in the substantia nigra suggests a model in which the lewy body causes neuronal death. Neurobiology Aging, 31, 99-103. doi:10.1016/j.neurobiolaging.2008.03.015
[96] Li, J.Y., Englund, E., Widner, H., Rehncrona, S., Bj?rklund, A., Lindvall, O. and Brundin, P. (2010) Characterization of lewy body pathology in 12- and 16-year-old intra- striatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Movement Disorders, 25, 1091-1096. doi:10.1002/mds.23012
[97] Stocchi, F., Rascol, O., Kieburtz, K., Poewe, W., Jankovic, J., Tolosa, E., Barone, P., Lang, A.E. and Olanow, C.W. (2010) Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: The STRIDE-PD study. Annals of Neurology, 68, 18-27. doi:10.1002/ana.22060
[98] Hauser, R.A, Schapira, A.H., Rascol, O., Barone, P., Mizuno, Y., Salin, L., Haaksma, M., Juhel, N. and Poewe, W. (2010) Randomized, double-blind, multicenter evaluation of pramipexole extended release once daily in early Parkin- son’s Disease. Movement Disorders, 25, 2542-2549. doi:10.1002/mds.23317
[99] Marks, W.J., Bartus, R.T., Siffert, J., Davis, C.S., Lozano, A., Boulis, N., Vitek, J., Stacy, M., Turner, D., Verhagen, L., Bakay, R., Watts, R., Guthrie, B., Jankovic, J., Simpson, R., Tagliati, M., Alterman, R., Stern, M., Baltuch, G., Starr, P.A., Larson, P.S., Ostrem, J.L., Nutt, J., Kieburtz, K., Kordower, J.H. and Olanow, C.W. (2010) Gene deli- very of AAV2-neurturin for Parkinson’s disease: A dou- ble-blind, randomised, controlled trial. The Lancet Neuro- logy, 9, 1164-1172. doi:10.1016/S1474-4422(1
[100] Almeida, Q.J., Frank, J.S., Roy, E.A., Patla, A.E., and Jog, M.S. (2007) Dopaminergic modulation of timing control and variability in the gait of Parkinson’s disease. Move- ment Disorders, 22, 1735-1742. doi:10.1002/mds.21603
[101] Almeida, Q.J. and Lebold, C.A. (2010) Freezing of gait in Parkinson’s disease: A perceptual cause for a motor im- pairment? Journal of Neurology, Neurosurgery & Psy- chiatry, 81, 513-518. doi:10.1136/jnnp.2008.160580
[102] Brown, M.J. and Almeida, Q.J. (2011) Evaluating dopa- minergic system contributions to cued pattern switching during bimanual coordination. European Journal of Neuro- science, 34, 632-640. doi:10.1111/j.1460-9568.2011.07773.x
[103] Serra, J.A., Domínguez, R.O., Marschoff, E.R., Guareschi E.M., Famulari, A.L. and Boveris, A. (2009) Systemic oxidative stress associated with the neurological diseases of aging. Neurochemical Research, 34, 2122-2132. doi:10.1007/s11064-009-9997-5
[104] Farooqui, T. and Farooqui, A. (2011) Lipid-mediated oxi- dative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinson’s Disease, 247467
[105] Kaur, D., Lee, D., Ragapolan, S. and Andersen, J.K. (2009) Glutathione depletion in immortalized midbrain- derived dopaminergic neurons results in increases in the labile iron pool: Implications for Parkinson’s disease. Free Radical Biology & Medicine, 46, 593-598. doi:10.1016/j.freeradbiomed.2008.11.012
[106] Lee, D.W., Kaur, D., Chinta, S.J., Rajagopalan, S. and Andersen, J.K. (2009) A disruption in iron-sulfur center biogenesis via inhibition of mitochondrial dithiol glu- taredoxin 2 may contribute to mitochondrial and cellular iron dysregulation in mammalian glutathione-depleted dopaminergic cells: Implications for Parkinson’s disease. Antioxid & Redox Signaling, 11, 2083-2094. doi:10.1089/ars.2009.2489
[107] Gomez, F.J., Aguirre, P., Gonzalez-Billault, C. and Nú?ez, M.T. (2011) Iron mediates neuritic tree collapse in mesen- cephalic neurons treated with 1-methyl-4-phenylpyridi- nium (MPP+). Journal of Neural Transmission, 118, 421- 431. doi:10.1007/s00702-010-0489-1
[108] Pelizzoni, I., Macco, R., Morini, M.F., Zacchetti, D., Grohovaz, F. and Codazzi, F. (2011). Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging Cell, 10, 172- 183. doi:10.1111/j.1474-9726.2010.00652.x
[109] Kohbata, S. and Shimokawa, K. (1993) Circulating anti- body to Nocardia in the serum of patients with Parkinson’s disease. Advances in Neurology, 60, 355-357.
[110] Kohbata, S., Tamura, T. and Hayashi, R. (1998) Accu- mulation of acid-fast lipochrome bodies in glial cells of the midbrain nigral lesion in Parkinson’s Disease. Clini- cal and Diagnositic Laboratory Immunology, 5, 888-893.
[111] Crichton, R.R., Dexter, D.T. and Ward, R.J. (2008) Mole- cular-based neurodegenerative diseases: From molecular mechanisms to therapeutic strategies Coordination Che- mistry Reviews, 252, 1189-1199. doi:10.1016/j.ccr.2007.10.019
[112] Marinova-Mutafchieva, L., Sadeghian, M., Broom, L., Davis, J.B., Medhurst, A.D. and Dexter, D.T. (2009) Relationship between microglial activation and dopami- nergic neuronal loss in the substantia nigra: A time course study in a 6-hydroxydopamine model of Parkinson’s di- sease. Journal of Neurochemistry, 110, 966-975. doi:10.1111/j.1471-4159.2009.06189.x
[113] Dexter, D.T., Statton, S.A., Whitmore, C., Freinbichler, W., Weinberger, P., Tipton, K.T., Della Corte, L., Ward, R.J. and Crichton, R.R. (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after periphereal administration. Journal of Neural Transmission, 118, 223-231. doi:10.1007/s00702-010-0531-3
[114] Ward, R.J., Lallemand, F., De Witte, P., Crichton, R.R., Piette, J., Della Corte, L., Hemmings, K., Page, M., Taylor, D. and Dexter, D.T. (2011) Anti-inflammatory actions of taurine analogues in phagocytic cells. Bioche- mical Pharmacology, 81, 743-751. doi:10.1016/j.bcp.2010.12.030
[115] Cheung, Z.H. and Ip, N.Y. (2009) The emerging role of autophagy in Parkinson’s disease. Molecular Brain, 2, 29. doi:10.1186/1756-6606-2-29
[116] Lai, K.O. and Ip, N.Y. (2009) Recent advances in under- standing the roles of Cdk5 in synaptic plasticity. Bio- chimica et Biophysica Acta, 1792, 741-745. doi:10.1016/j.bbadis.2009.05.001
[117] Gorbatyuk, O.S., Li, S., Sullivan, L.F., Chen, W., Kon- drikova, G., Manfredsson, F.P., Mandel, R.J. and Mu- zyczka, N. (2008) The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Pro-ceeding of the National Academy of Sciences USA, 105, 763-768.
[118] Nakamura, K., Nemani, V.M., Azarbal, F., Skibinski, G., Levy, J.M., Egami, K., Munishkina, L., Zhang, J., Gard- ner, B., Wakabayashi, J., Sesaki, H., Cheng, Y., Finkbe- iner, S., Nussbaum, R.L., Masliah, E. and Edwards, R.H. (2011) Direct membrane association drives mitochondrial fission by the Parkinson Disease-associated protein {al- pha}-synuclein. The Journal of Biological Chemistry, 286, 20710-20726. doi:10.1074/jbc.M110.213538
[119] Muntane, G., Dalfo, E., Martinez, A. and Ferrer, I. (2008) Phosphorylation of tau and alpha-synuclein in synaptic- enriched fractions of the frontal cortex in Alzheimer’s disease and in Parkinson’s disease and related alpha- synucleinopathies. Neuroscience, 152, 913-923. doi:10.1016/j.neuroscience.2008.01.030
[120] Chambraud, B., Sardin, E., Giustiniani, J., Dounane, O., Schumacher, M., Goedert, M. and Baulieu, E.E. (2010). A role for FKBP52 in Tau protein function. Proceeding of the National Academy of Sciences USA, 107, 2658-2663. doi:10.1073/pnas.0914957107
[121] Fusco, D., Vargiolu, M., Vidone, M., Mariani, E., Pennisi, L.F., Bonora, E., Capellari, S., Dirnberger, D., Baumeister, R., Martinelli, P. and Romeo, G. (2010) The RET51/ FKBP52 complex and its involvement in Parkinson dis- ease. Human Molecular Genetics, 19, 2804-2816. doi:10.1093/hmg/ddq181
[122] Schuster, S., Nadjar, A., Guo, J.T., Li, Q., Ittrich, C., Hengerer, B. and Bezard, E. (2008) The 3-hydroxy-3- methylglutaryl-CoA reductase inhibitor lovastatin reduces severity of LDOPA-induced abnormal involuntary move- ments in experimental Parkinson’s disease. Journal of Neuroscience, 28, 4311-4316. doi:10.1523/JNEUROSCI.4720-07.2008
[123] Salvatore, M.F., Pruett, B.S., Spann, S.L. and Dempsey, C. (2009) Aging reveals a role for nigral tyrosine hydroxy- lase ser31 phosphorylation in locomotor activity genera- tion. PLoS ONE, 4, e8466. doi:10.1371/journal.pone.0008466
[124] Pruett, B.S. and Sal-vatore, M.F. (2010) GFRα-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. Journal of Neuro-chemistry, 115, 707-715. doi:10.1111/j.1471-4159.2010.06963.x
[125] Todd, A.M. and Staveley, B.E. (2008) Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila mo- del of Parkinson's disease. Genome, 51, 1040-1046. doi:10.1139/G08-085
[126] Botella, J.A., Bayersdorfer, F. and Schneuwly, S. (2008) Superoxide dismutase overexpression protects dopaminer- gic neurons in a Drosophila model of Par-kinson’s disease. Neurobiology of Disease, 30, 65-73. doi:10.1016/j.nbd.2007.11.013
[127] Deng, H., Dodson, M.W., Huang, H. and Guo, M. (2008) The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proceedings of the National Academy Science USA, 105, 14503-14508. doi:10.1073/pnas.0803998105
[128] Liu, Z., Wang, X., Yu, Y., Li, X., Wang, T., Jiang, H., Ren, Q., Jiao, Y., Sawa, A., Moran, T., Ross, C.A., Montell, C. and Smith, W.W. (2008) A Dro-sophila model for LRRK2- linked parkinsonism. Proceedings of the National Acad- emy Science USA, 105, 2693-2398.
[129] Trinh, K., Moore, K., Wes, P.D., Muchowski, P.J., Dey, J., Andrews, L. and Pallanck, L.J. (2008) Induction of the phase II detoxification pathway suppresses neuron loss in Drosophila models of Parkinson’s disease. Journal of Neuro- science, 28, 465-472. doi:10.1523/JNEUROSCI.4778-07.2008
[130] Tanner, C.M. (2003) Is the cause of Parkinson’s disease environmental or hereditary? Evidence from twin studies. Advances in Neurology, 91, 133-142.
[131] Dick, F.D., et al. (2007) Environmental risk factors for Parkinson’s disease and Parkinsonism: The Geoparkinson study. Occupational and Environmental Medicine, 64, 666- 672. doi:10.1136/oem.2006.027003
[132] Crotty, S., Fitzgerald, P., Tuohy, E., Harris, D.M., Fisher, A., Mandel, A., Bolton, A.E., Sullivan, A.M. and Nolan, Y. (2008) Neuroprotective effects of novel phosphatidyl- glycerol-based phospholipids in the 6-hydroxydopamine model of Parkinson’s disease. European Journal of Neu- roscience, 27, 294-300. doi:10.1111/j.1460-9568.2007.06018.x
[133] Gasser, T. (2009) Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Reviews in Molecular Medicine, 11, e22. doi:10.1017/S1462399409001148
[134] Lees, A.J., Hardy, J. and Revesz, T. (2009) Parkinson’s disease. Lancet, 373, 2055-2066. doi:10.1016/S0140-6736(09)60492-X
[135] Borah, A. and Mohanakumar, K.P. (2010). L-DOPA- induced 6-hydroxydopamine production in the striata of rodents is sen-sitive to the degree of denervation. Neuro- chemistry Interna-tional, 56, 357-362. doi:10.1016/j.neuint.2009.11.008
[136] Banegas, I., Prieto, I., Alba, F., Vives, F., Araque, A., Segarra, A.B., Durán, R., de Gasparo, M. and Ramírez, M. (2005) Angiotensinase activity is asymmetrically distrib- uted in the amygdala, hippocampus and prefrontal cortex of the rat. Behavioural Brain Research, 156, 321-326. doi:10.1016/j.bbr.2004.06.002
[137] Banegas, I., Prieto, I., Vives, F., Alba, F., de Gasparo, M., Duran, R., Luna, J. de D., Segarra, A.B., Hermoso, F. and Ramírez, M. (2009) Asymmetrical response of aminopep- tidase A and nitric oxide in plasma of normotensive and hypertensive rats with experimental hemiparkinsonism. Neuropharmacology, 56, 573-579. doi:10.1016/j.neuropharm.2008.10.011
[138] Banegas, I., Prieto, I., Vives, F., Alba, F., de Gasparo, M., Duran, R., Segarra, A.B. and Ramírez, M. (2010) Later- alized response of oxytocinase activity in the medial pre- frontal cortex of a unilateral rat model of Parkinson’s disease. Behavioural Brain Research, 213, 328-331. doi:10.1016/j.bbr.2010.05.030
[139] Gotthardt, K., Weyand, M., Kortholt, A., van Haastert, P.J. and Wittinghofer, A. (2008) Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. The EMBO Journal, 27, 2239-2249. doi:10.1038/emboj.2008.150
[140] van Egmond, W.N., Kortholt, A., Plak, K., Bosgraaf, L., Bosgraaf, S., Keizer-Gunnink, I. and van Haastert, P.J. (2008) Intramolecular activation mechanism of the Dic- tyostelium LRRK2 homolog Roco protein GbpC. The Journal of Biological Chemistry, 283, 30412-30420. doi:10.1074/jbc.M804265200
[141] van Egmond, W.N. and van Haastert, P.J. (2010) Charac- terization of the Roco protein family in Dictyostelium discoideum. Eukaryot Cell, 9, 751-761. doi:10.1128/EC.00366-09
[142] Araki, T., van Egmond, W.N., van Haastert, P.J. and Wil- liams, J.G. (2010) Dual regulation of a Dictyostelium STAT by cGMP and Ca2+ signalling. Journal of Cell Sci- ence, 123, 837-841. doi:10.1242/jcs.064436
[143] Ibá?ez-Sandoval, O., Carrillo-Reid, L., Galarraga, E., Tapia, D., Mendoza, E., Gomora, J.C., Aceves, J. and Bargas, J. (2007) Bursting in substantia nigra pars reticu- lata neurons in vitro: Possible relevance for Parkinson disease. Journal of Neurophysiology, 98, 2311-2323. doi:10.1152/jn.00620.2007
[144] Carrillo-Reid, L., Tecuapetla, F., Tapia, D., Hernandez- Cruz, A., Galarraga, E., Drucker-Colin, R. and Bargas, J. (2008) Encoding network states by striatal cell assemblies. Journal of Neurophysiology, 99, 1435-1450. doi:10.1152/jn.01131.2007
[145] Li, X., Ouyang, G., Usami, A., Ikegaya, Y. and Sik, A. (2010) Scale-free topology of the CA3 hippocampal net- work: A novel method to analyze functional neuronal as- semblies. Biophysical Journal, 98, 1733-1741. doi:10.1016/j.bpj.2010.01.013
[146] Jaidar, O., Carrillo-Reid, L., Hernandez, A., Drucker- Colin, R., Bargas, J. and Hernan-dez-Cruz, A. (2010) Dy- namics of the Parkinsonian striatal microcircuit: Entrain- ment into a dominant network state. Journal of Neuro- science, 30, 11326-11336. doi:10.1523/JNEUROSCI.1380-10.2010
[147] Goldberg, M.S., Pisani, A., Haburcak, M., Vortherms, T.A., Kitada, T., Costa, C., Tong, Y., Martella, G., Tscherter, A., Martins, A., Bernardi, G., Roth, B.L., Pothos, E.N., Calabresi, P. and Shen, J. (2005) Nigrostriatal dopa- minergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 45, 489-496. doi:10.1016/j.neuron.2005.01.041
[148] Gautier, C.A., Kitada, T. and Shen, J. (2008) Loss of PINK1 causes mitochondrial functional defects and in- creased sensitivity to oxidative stress. Proceedings of the National Academy Science USA, 105, 11364-11369. doi:10.1073/pnas.0802076105
[149] Healy, D.G., et al. and International LRRK2 Consortium (2008) Phenotype, genotype, and worldwide genetic pene- trance of LRRK2-associated Par-kinson’s disease: A case- control study. The Lancet Neurology, 7, 583-590. doi:10.1016/S1474-4422(08)70117-0
[150] Lin, X., et al. (2009) Leucine-rich repeat kinase 2 regu- lates the progression of neuropathology induced by Park- inson’s-disease-related mutant alpha-synuclein. Neuron, 64, 807-827. doi:10.1016/j.neuron.2009.11.006
[151] Li, Y., et al. (2009) Mutant LRRK2(R1441G) BAC trans- genic mice recapitulate cardinal features of Parkinson’s disease. Nature Neuroscience, 12, 826-828. doi:10.1038/nn.2349
[152] Simon-Sanchez, J., et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics, 41, 1308-1312. doi:10.1038/ng.487
[153] Venderova, K., et al. (2009) Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Human Mo- lecular Genetics, 18, 4390-4404. doi:10.1093/hmg/ddp394
[154] Natale, G., Kastsiushenka, O., Fulceri, F., Ruggieri, S., Paparelli, A. and Fornai, F. (2010) MPTP-induced Park- insonism extends to a subclass of TH positive neurons in the gut. Brain Research, 1355, 195-206. doi:10.1016/j.brainres.2010.07.076
[155] Hamza, T.H., et al. (2010) Common genetic variation in the HLA region is associ-ated with late-onset sporadic Parkinson’s disease. Nature Ge-netics, 42, 781-785. doi:10.1038/ng.642
[156] Li, X., Patel, J.C., Wang, J., Avshalumov, M.V., Nichol- son, C., Buxbaum, J.D., Elder, G.A., Rice, M.E. and Yue, Z. (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpres-sion in mice is eliminated by familial Parkinson's disease muta-tion G2019S. Journal of Neuroscience, 30, 1788-1797. doi:10.1523/JNEUROSCI.5604-09.2010
[157] Im, S.A., Choi, H.S., Hwang, B.Y., Lee, M.K. and Lee, C.K. (2009) Augmenta-tion of immune responses by oral administration of Gynostemma pentaphyllum ethanol ex- tract. Korean Journal of Pharmacognosy, 40, 35-40.
[158] Choi, H.S., Park, M.S., Kim, S.H., Hwang, B.Y., Lee, C.K. and Lee, M.K. (2010) Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of Parkin- son’s disease. Molecules, 15, 2814-2824. doi:10.3390/molecules15042814
[159] Sinicropi, M.S., Leone, F., Rovito, N. and Genchi, G. (2010) Behaviour of ace-tyl-L-carnitine injections (Ni- cetile? fiale) with different drugs used for combined ther- apy. Advances in Therapy, 27, 547-554. doi:10.1007/s12325-010-0055-0
[160] Zhang, H.Y., Jia, H.Q., Liu, J.H., Ao, N., Yan, B., Shen, W.L., Wang, X.M., Li, X., Luo, C. and Liu, J.K. (2010) Combined R-alpha-lipoic acid and ace-tyl-L-carnitine ex- erts efficient preventative effects in a cellular model of Parkinson’s disease. Journal of Cellular and Mo-lecular Medicine, 14, 215-225. doi:10.1111/j.1582-4934.2008.00390.x
[161] Massart, R., Guilloux, J. P., Mignon, V., Sokoloff, P. and Diaz, J. (2009) Striatal Gpr88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. European Journal of Neuroscience, 30, 397-414. doi:10.1111/j.1460-9568.2009.06842.x
[162] Jimenez-Del-Rio, M. and Velez-Pardo, C. (2006) Insulin- like growth factor-1 prevents Aβ[25-35]/(H2O2)-induced apoptosis in lymphocytes by reciprocal NF-κB activation and p53 inhibition via PI3K-dependent pathway. Growth Factors, 24, 67-78. doi:10.1080/08977190500361788
[163] Jimenez-Del-Rio, M., Daza-Restrepo, A. and Velez-Pardo, C. (2008) The cannabinoid CP55, 940 prolongs survival and improves locomotor activity in Drosophila melano- gaster against paraquat: Implications in Parkinson’s dis- ease. Neuroscience Research, 61, 404-411. doi:10.1016/j.neures.2008.04.011
[164] Avila-Gomez, I.C., Velez-Pardo, C. and Jimenez-Del-Rio, M. (2010) Effects of insulin-like growth factor-1 on ro- tenone-induced apoptosis in lymphocyte cells. Basic & Clinical Pharmacology & Toxicology, 106, 53-61.
[165] Velez-Pardo, C., Jimenez-Del-Rio, M., Lores-Arnaiz, S. and Bustamante, J. (2010) Protective effects of the syn- thetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure. Neurochemical Re- search, 35, 1323-1332. doi:10.1007/s11064-010-0188-1
[166] Long-Smith, C.M., Sul-livan, A.M. and Nolan, Y.M. (2009) The influence of microglia on the pathogenesis of Park- inson’s disease. Progress in Neu-robiology, 89, 277-287. doi:10.1016/j.pneurobio.2009.08.001
[167] Long-Smith, C.M., Collins, L., Toulouse, A., Sullivan, A.M. and Nolan, Y.M. (2010) Interleukin-1beta contrib- utes to dopaminergic neuronal death induced by lipopo- lysaccharide-stimulated rat glia in vitro. Journal of Neuro- immunology, 226, 20-26. doi:10.1016/j.jneuroim.2010.05.030
[168] Antonelli, T., Tomasini, M.C., Fuxe, K., Agnati, L.F., Tanganelli, S. and Fer-raro, L. (2007) Receptor-receptor interactions as studied with microdialysis. Focus on NTR/ D2 interactions in the basal gan-glia. Journal of Neural Transmission, 114, 105-113. doi:10.1007/s00702-006-0558-7
[169] Ferraro, L., Tomasini, M.C., Beggiato, S., Guerrini, R., Salvadori, S., Fuxe, K., Calzà, L., Tanganelli, S. and An- tonelli, T. (2009) Emerging evidence for neurotensin re- ceptor 1 antagonists as novel pharmaceutics in neurode- generative disorders. Mini Reviews in Medical Chemistry, 9, 1429-1438. doi:10.2174/138955709789957495
[170] Niknejad, H., Peirovi, H., Jorjani, M., Ahmadiani, A., Ghanavi, J. and Seifalian, A.M. (2008) Properties of the amniotic membrane for potential use in tissue engineering. European Cells and Materials, 15, 88-99.
[171] Niknejad, H., Peirovi, H., Ahmadiani, A., Ghanavi, J. and Jorjani, M. (2010) Differentiation factors that influence neuronal markers expression in vitro from human amniotic epi-thelial cells. European Cells and Materials, 19, 22-29.
[172] Bartels, A.L., Willemsen, A.T., Kortekaas, R., de Jong, B.M., de Vries, R., de Klerk, O., van Oostrom, J.C., Portman, A. And Leenders, K.L. (2008) Decreased blood- brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. Journal of Neural Transmission, 115, 1001-1009. doi:10.1007/s00702-008-0030-y
[173] Thornton, E., Tran, T.T. and Vink, R. (2010) A substance P mediated pathway contributes to 6-hydroxydopamine induced cell death. Neuroscience Letters, 481, 64-67. doi:10.1016/j.neulet.2010.06.057
[174] Alachkar, A., Brotchie, J.M. and Jones, O. (2006) Alpha2-adrenoceptor-mediated mod-ulation of the release of GABA and noradrenaline in the rat substantia nigra pars reticulata. Neuroscience Letters, 395, 138-142. doi:10.1016/j.neulet.2005.10.069
[175] Alachkar, A., Brotchie, J.M. and Jones, O. (2010) Bind- ing of dopamine and 3-methoxytyramine as l-DOPA me- tabolites to human al-pha(2)-adrenergic and dopaminergic receptors. Neuroscience Research, 67, 245-249. doi:10.1016/j.neures.2010.03.008
[176] Alachkar, A., Brotchie, J.M. and Jones, O. (2010) Loco- motor response to L-DOPA in reserpine treated rats fol- lowing central inhibition of aromatic L-amino acid de- carboxylase: Further evidence for non-dopaminergic ac- tions of L-DOPA and its metabolites. Neuroscience Re- search, 68, 44-50. doi:10.1016/j.neures.2010.06.003
[177] Takasaki, S. (2009) Mitochondrial haplogroups associated with Japanese cente-narians, Alzheimer’s patients, Parkinson’s patients, type 2 dia-betic patients and healthy non-obese young males. Journal of Genetics and Genom- ics, 36, 425-434. doi:10.1016/S1673-8527(08)60132-0
[178] Suzuki, M., Kurita, A. and Hashimoto, M. (2006) Im- paired myocardial 123Imetaiodobenzylguanidine uptake in Lewy body disease: Comparison between dementia with Lewy bodies and Parkin-son’s Disease. Journal of the Neurological Sciences, 240, 15-19. doi:10.1016/j.jns.2005.08.011
[179] Suzuki, M., Urashima, M. and Oka., H. (2007) Cardiac sympathetic denervation in bradykinesia-dominant Park- inson’s disease. Neuroreport, 18, 1867-1870. doi:10.1097/WNR.0b013e3282f1ab33

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.