Production of MgO-X Refractory Material with Cellular Matrix by Colloidal Processing

Abstract

The production in the siderurgy and foundry industry has changed considerably in the past years. Despite the new technologies and process, the use of magnesia carbon refractory remains constant. Namely the magnesia carbon refractory is widely used due low-priced cost, high refractivity, excellent corrosion resistance, thermal shock resistance, low thermal expansion, high slag penetration resistance and low wettability. The main disadvantages of use magnesia carbon refractories are the high carbon oxidation susceptibility and the formation CO and CO2 gases. As a result, tonne of CO and CO2 are expelled to the atmosphere. The use of open cell carbon-foam magnesia composite for refractory application can offer a substitute for the traditional refractory material since the high carbon content can be minored and the low mechanical strength and poor oxidation resistance of these materials can be improved.

Share and Cite:

W. Silveira and G. Falk, "Production of MgO-X Refractory Material with Cellular Matrix by Colloidal Processing," Low Carbon Economy, Vol. 3 No. 3A, 2012, pp. 83-91. doi: 10.4236/lce.2012.323012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. M. M. Ewais, “Carbon Based Refractories,” Journal of the Ceramic Society of Japan, Vol. 112, No. 1310, 2004, pp. 517-532. doi:10.2109/jcersj.112.517
[2] S. Zhang and W. Lee, “Carbon Containing Castables: Current Status and Future Prospects,” British Ceramic Transactions, Vol. 101, No. 1, 2002, pp. 1-8. doi:10.1179/096797801125000410
[3] M. Rigaud, “New Additives in Carbon-Bonded Refractories. Ceramic: Charting the Future,” Advances in Science and Technology, Vol. 3A, 1995, pp. 399-413.
[4] X. Li, M. Rigaud and S. Palco, “Oxidation Kinects Graphite of Phase in Magnesia-Carbon Refractories,” Journal of the American Ceramic Society, Vol. 78, No. 4, 1995, pp. 965-971. doi:10.1111/j.1151-2916.1995.tb08423.x
[5] A. Yamaguchi, S. Zhang and J. Yu, “Effect of Refractory Oxides on the Oxidation of Graphite and Amorphous Carbon,” Journal of the American Ceramic Society, Vol. 79, No. 9, 1996, pp. 2509-2511. doi:10.1111/j.1151-2916.1996.tb09009.x
[6] M. Chen, N. Wang, J. Yu and A. Yamaguchi, “Oxidation Protection of CaO-ZrO2-C Refractories by Addition of SiC,” Ceramics International, Vol. 33, No. 8, 2007, pp. 1585-1589.
[7] S. Zhang and W. E. Lee, “Influence of Additives on Corrosion Resistance Corrosion Resistance and Corroded Microstructures of MgO-C Refractories,” Journal of the European Ceramic Society, Vol. 21, No. 13, 2001, pp. 2393-2405. doi:10.1016/S0955-2219(01)00208-4
[8] C. G. Aneziris, J. Hubalkova and R. Barabás, “Microstructure Evaluation of MgO-C Refractories with TiO2-and Al-additions,” Journal of the European Ceramic Society, Vol. 27, No. 1, 2007, pp. 73-78. doi:10.1016/j.jeurceramsoc.2006.03.001
[9] A. S. Gokce, C. Gurcan, S. Ozgen and S. Aydin, “The Effect of Antioxidants on the Oxidation Behaviour of Magnesi-Carbon Refractory Bricks,” Ceramics International, Vol. 34, No. 2, 2008, pp. 323-330. doi:10.1016/j.ceramint.2006.10.004
[10] V. Domiciano, J. R. Garcia and V. C. Pandolfelli, “Water Corrosion Resistance of Metal Powders for Carbon-Containing Castables,” American Ceramic Society Bulletin, Vol. 86, No. 1, 2007, pp. 9401-9406.
[11] M. N. Khezrabadi, J. Javadpour, H. R. Rezaie and R. Naghizadeh, “The Effect of Additives on the Properties and Microstructures of Al2O3-C Refractories,” Journal of Materials Science, Vol. 41, No. 10, 2006, pp. 3027-3032. doi:10.1007/s10853-006-6770-x
[12] C.-F. Chan, B. B. Argent and W. E. Lee, “Prediction of the Effect Additives on Slag Resistance of Al2O3-SiO2-SiC-C Bond Phases in Air,” Calphad, Vol. 27, No. 1, 2003, pp. 115-125. doi:10.1016/S0364-5916(03)00036-1
[13] T. R. Lipinski, R. Fichtner and T. Benecke, “Study of the Oxidation Protection of MgO-C Refractories by Means of Boron Carbide,” Steel Research, Vol. 63, No. 11, 1992, pp. 493-495.
[14] S. Hayashi, S. Takanaga, H. Takahashi and A. Watanabe, “Behaviour of Boric Compounds Added in MgO-C Bricks,” Taikabutsu Overseas, Vol. 11, No. 3, 1991, pp. 12-19.
[15] A. Yamaguchi and H. Tanaka, “Behaviour and Effects of ZrB2 Added to Carbon-Containing Refractories,” Taikabutsu Overseas, Vol. 15, No. 2, 1995, pp. 3-9.
[16] O. Volkova, B. Sahebkar, J. Hubalkova, C. G. Aneziris and P. R. Scheller, “Ladle Heating Procedure and Its Influence on the MgO-C-Oxidation,” Materials and Manufacturing Processes Vol. 23, No. 8, 2008, pp. 758-763. doi:10.1080/10426910802381975
[17] S. Basu, A. K. Lahiri and S. Seetharaman, “Activity of Iron Oxide in Steelmaking Slag,” Metallurgical and Materials Transactions, Vol. 39, No. 3, 2008, pp. 447-456.
[18] A. S. Gokce, C. Gurcan, S. Ozgen and S. Aydin, “The Effect of Antioxidants on the Oxidation Behaviour of Magnesia-Carbon Refractory Bricks,” Ceramics International, Vol. 34, No. 2, 2008, pp. 323-330. doi:10.1016/j.ceramint.2006.10.004
[19] S. K. Sadrnezhaad, S. Mahshid, B. Hshemi and Z. A. Nemati, “Oxidation Mechanism of C in MgO-C Refractory Bricks,” Journal of the American Ceramic Society, Vol. 89, No. 4, 2006, pp. 1308-1316. doi:10.1111/j.1551-2916.2005.00863.x
[20] Z. A. Nemati, S. K. Sadrnezhaad and H. R. A. Mooghari, “Effect of Ferrosilicon, Silicon and Aluminium Antioxidants on Microstructure and Mechanical Properties of Magnesia-Graphite Refractory,” Refractories Applications and News, Vol. 10, No. 6, 2005, pp. 17-23.
[21] S. Zhang, N. J. Marriott and W. E. Lee, “Thermochemistry and Microstructures of MgO-C Refractories Containing Various Antioxidants,” Journal of the European Ceramic Society, Vol. 21, No. 8, 2001, pp. 1037-1047. doi:10.1016/S0955-2219(00)00308-3
[22] K. Hunold, U. Kross, J. P?tschke, S. Prietzel and M. Thiesen, “RAT—Preventing Erosion in Submerged Nozzles,” Ceramic Industry, 2001.
[23] A. R. Studart, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler, “Processing Routes to Macroporous Ceramics: A Review,” Journal of the American Ceramic Society, Vol. 89, No. 2006, pp. 1771-1789. doi:10.1111/j.1551-2916.2006.01044.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.