Health> Vol.4 No.11A, November 2012

Alpha-synuclein truncation and disease

DownloadDownload as PDF (Size:921KB)  HTML    PP. 1167-1177  

ABSTRACT

Alpha-synuclein is the major component of Lewy bodies, insoluble protein aggregates, found in patients with Parkinson’s disease, diffuse Lewy body disease, and the Lewy body variant of Alzheimer’s disease. Alpha-synuclein has been found within Lewy bodies to contain many different modifications, including nitration, phosphorylation, ubiquitination, and truncation. C-terminally truncated forms of alpha-synuclein aggregate faster than the full-length protein in vitro, and are thus believed to play a role in Lewy body formation and disease progression. Pathological studies of post mortem brain tissue and the generation of transgenic mouse models further support a role of C-terminally truncated forms of alpha-synuclein in disease. Several enzymes, some of which function extracellularly, have been implicated in the production of these C-terminally truncated forms of alpha-synuclein. However, the enzymes responsible for alphasynuclein truncation in vivo have not yet been firmly established.

Cite this paper

Ritchie, C. and Thomas, P. (2012) Alpha-synuclein truncation and disease. Health, 4, 1167-1177. doi: 10.4236/health.2012.431175.

References

[1] Trojanowski, J.Q., et al. (1998) Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death and Differentiation, 5, 832-837. doi:10.1038/sj.cdd.4400432
[2] Norris, E.H. and Giasson, B.I. (2005) Role of oxidative damage in protein aggregation associated with Parkinson’s disease and related disorders. Antioxidants & Redox Signaling, 7, 672-684. doi:10.1089/ars.2005.7.672
[3] Mackenzie, I.R. (2000) Activated microglia in dementia with Lewy bodies. Neurology, 55, 132-134. doi:10.1212/WNL.55.1.132
[4] Qian, L., Flood, P.M. and Hong, J.-S. (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. Journal of Neural Transmission, 117, 971-979. doi:10.1007/s00702-010-0428-1
[5] Spillantini, M.G., et al. (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469-6473. doi:10.1073/pnas.95.11.6469
[6] Kuzuhara, S., et al. (1988) Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathologica, 75, 345-353. doi:10.1007/BF00687787
[7] Ito, T., et al. (2003) Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1. Journal of Biological Chemistry, 278, 29106-29114. doi:10.1074/jbc.M302763200
[8] Tanji, K., et al. (2011) Synphilin-1-binding protein NUB1 is colocalized with nonfibrillar, proteinase K-resistant α-synuclein in presynapses in Lewy body disease. Journal of Neuropathology and Experimental Neurology, 70, 879-889. doi:10.1097/NEN.0b013e3182303745
[9] Kuusisto, E., Salminen, A. and Alafuzoff, I. (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport, 12, 2085-2090. doi:10.1097/00001756-200107200-00009
[10] Zatloukal, K. and Stumptner, C. (2002) p62 is a common component of cyto-plasmic inclusions in protein aggregation diseases. The American Journal of Pathology, 160, 255-263. doi:10.1016/S0002-9440(10)64369-6
[11] Gai, W.P., Blumbergs, P.C. and Blessing, W.W. (1996) Microtu-bule-associated protein 5 is a component of Lewy bodies and Lewyneurites in the brainstem and forebrain regions affected in Parkinson’s disease. Acta Neuropathologica, 91, 78-81. doi:10.1007/s004010050395
[12] Jensen, P.H., et al. (2000) Microtubule-associated protein 1B is a component of cortical Lewy bodies and binds alpha-synuclein filaments. The Journal of Biological Chemistry, 275, 21500-21507. doi:10.1074/jbc.M000099200
[13] D'Andrea, M.R., Ilyin, S. and Plata-Salaman, C.R. (2001) Abnormal patterns of microtu-bule-associated protein-2 (MAP-2) immunolabeling in neuronal nuclei and Lewy bodies in Parkinson’s disease substantianigra brain tissues. Neuroscience Letters, 306, 137-140. doi:10.1016/S0304-3940(01)01811-0
[14] Duda, J.E., et al. (2002) Concurrence of alpha-synuclein and tau brain pathology in the Contursi kindred. Acta Neuropathologica, 104, 7-11. doi:10.1007/s00401-002-0563-3
[15] Arawaka, S., et al. (2006) The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. The Journal of Neuroscience, 26, 9227-9238. doi:10.1523/JNEUROSCI.0341-06.2006
[16] Spillantini, M.G., et al. (1997) Alpha-synuclein in Lewy bodies. Nature, 388, 839-840. doi:10.1038/42166
[17] Volles, M.J. and Lansbury, P.T. (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry, 42, 7871-7878. doi:10.1021/bi030086j
[18] Winner, B., et al. (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Pro-ceedings of the National Academy of Sciences of the United States of America, 108, 4194-4199. doi:10.1073/pnas.1100976108
[19] Krüger, R., et al. (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106-108. doi:10.1038/ng0298-106
[20] Zarranz, J.J., et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164-173. doi:10.1002/ana.10795
[21] Polymeropoulos, M.H., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045-2047. doi:10.1126/science.276.5321.2045
[22] Chartier-Harlin, M.-C., et al. (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167-1169. doi:10.1016/S0140-6736(04)17103-1
[23] Singleton, A.B., et al. (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841. doi:10.1126/science.1090278
[24] Paisán-Ruíz, C., et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595-600. doi:10.1016/j.neuron.2004.10.023
[25] Zimprich, A., et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601-607. doi:10.1016/j.neuron.2004.11.005
[26] Kitada, T., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605-608. doi:10.1038/33416
[27] Valente, E.M., et al. (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158-1160. doi:10.1126/science.1096284
[28] Bonifati, V., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256-259. doi:10.1126/science.1077209
[29] Ramirez, A., et al. (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Na-ture Genetics, 38, 1184-1191. doi:10.1038/ng1884
[30] Sohal, R.S. and Orr, W.C. (2012) The redox stress hypothesis of aging. Free Radical Biology and Medicine, 52, 539-555. doi:10.1016/j.freeradbiomed.2011.10.445
[31] Bratic, I. and Trifunovic, A. (2010) Mitochondrial energy metabolism and ageing. Biochimicaet Biophysica Acta, 1797, 961-967. doi:10.1016/j.bbabio.2010.01.004
[32] Masalha, R., et al. (1997) Selective dopamine neurotoxicity by an industrial chemical: An environmental cause of Parkinson’s disease? Brain Research, 774, 260-264. doi:10.1016/S0006-8993(97)81717-9
[33] Shibatani, T., Nazir, M. and Ward, W.F. (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. The Journals of Gerontology. Series A, Bio- logical Sciences and Medical Sci-ences, 51, B316-B322. doi:10.1093/gerona/51A.5.B316
[34] Hayashi, T. and Goto, S. (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mechanisms of Ageing and Development, 102, 55-66. doi:10.1016/S0047-6374(98)00011-6
[35] Andersson, M., Sj?strand, J. and Karlsson, J.O. (1998) Proteolytic cleavage of N-Succ-Leu-Leu-Val-Tyr-AMC by the proteasome in lens epi-thelium from clear and cataractous human lenses. Experimental Eye Research, 67, 231-236. doi:10.1006/exer.1998.0519
[36] Ponnappan, U., Zhong, M. and Trebilcock, G.U. (1999) Decreased proteasome-mediated degradation in T cells from the elderly: A role in immune senescence. Cellular Immunology, 192, 167-174. doi:10.1006/cimm.1998.1418
[37] Conconi, M., et al. (1996) Agerelated decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat-shock protein 90. Archives of Biochemistry and Biophysics, 331, 232-240. doi:10.1006/abbi.1996.0303
[38] Hayashi, T. and Goto, S. (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mechanisms of Ageing and Development, 102, 55-66. doi:10.1016/S0047-6374(98)00011-6
[39] Lee, C.K., et al. (1999) Gene expression profile of aging and its retardation by caloric restriction. Science, 285, 1390-1393. doi:10.1126/science.285.5432.1390
[40] Ly, D.H., et al. (2000) Mitotic misregulation and human aging. Science, 287, 2486-2492. doi:10.1126/science.287.5462.2486
[41] Cuervo, A.M. and Dice, J.F. (2000) Age-related decline in chaperone-mediated autophagy. The Journal of Biological Chemistry, 275, 31505-31513. doi:10.1074/jbc.M002102200
[42] Uéda, K., et al. (1993) Molecular cloning of cDNA en- coding an unrecognized component of amyloid in Alz- heimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 11282- 11286. doi:10.1073/pnas.90.23.11282
[43] Dunker, A.K., et al. (2001) Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26-59. doi:10.1016/S1093-3263(00)00138-8
[44] Davidson, W.S., et al. (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. Journal of Biological Chemistry, 273, 9443-9449. doi:10.1074/jbc.273.16.9443
[45] Eliezer, D., et al. (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061-1073. doi:10.1006/jmbi.2001.4538
[46] Leng, Y., Chase, T.N. and Bennett, M.C. (2001) Mus- carinic receptor stimulation induces translocation of an alpha-synuclein oligomer from plasma membrane to a light vesicle fraction in cytoplasm. The Journal of Bio- logical Chemistry, 276, 28212-28218. doi:10.1074/jbc.M011121200
[47] Chandra, S., et al. (2003) A broken alpha-helix in folded alpha-synuclein. Journal of Bio-logical Chemistry, 278, 15313-15318. doi:10.1074/jbc.M213128200
[48] Ulmer, T.S., et al. (2005) Structure and dynamics of mi- celle-bound human al-pha-synuclein. Journal of Biologi- cal Chemistry, 280, 9595-9603. doi:10.1074/jbc.M411805200
[49] Vamvaca, K., Volles, M.J. and Lansbury, P.T. (2009) The first N-terminal amino acids of alpha-synuclein are essential for alpha-helical structure for-mation in vitro and membrane binding in yeast. Journal of Molecular Biology, 389, 413-424. doi:10.1016/j.jmb.2009.03.021
[50] Dedmon, M.M., et al. (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. Journal of the American Chemical Society, 127, 476-477. doi:10.1021/ja044834j
[51] Bernadó, P., et al. (2005) Defining long-range order and local disorder in native alpha-synuclein using residual dipolar couplings. Journal of the American Chemical Society, 127, 17968-17969. doi:10.1021/ja055538p
[52] Bertoncini, C.W., Jung, Y.-S., et al. (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proceed-ings of the National Academy of Sciences of the United States of America, 102, 1430-1435. doi:10.1073/pnas.0407146102
[53] Bertoncini, C.W., Fernan-dez, C.O., et al. (2005) Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. The Journal of Bio- logical Chemistry, 280, 30649-30652. doi:10.1074/jbc.C500288200
[54] Iwai, A., et al. (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynap- tic protein of the central nervous system. Neuron, 14, 467-475. doi:10.1016/0896-6273(95)90302-X
[55] Yu, S., et al. (2007) Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience, 145, 539-555. doi:10.1016/j.neuroscience.2006.12.028
[56] Lee, H.-J., Choi, C. and Lee, S.-J. (2002) Membranebound alpha-synuclein has a high aggregation propensity and the ability to seed the aggre-gation of the cytosolic form. The Journal of Biological Chem-istry, 277, 671-678. doi:10.1074/jbc.M107045200
[57] Li, W.-W., et al. (2007) Localization of alpha-synuclein to mitochondria within midbrain of mice. Neuroreport, 18, 1543-1546. doi:10.1097/WNR.0b013e3282f03db4
[58] Zhang, L., et al. (2008) Semi-quantitative analysis of alpha-synuclein in sub-cellular pools of rat brain neurons: an immunogold electron microscopic study using a C-terminal specific monoclonal an-tibody. Brain Research, 1244, 40-52. doi:10.1016/j.brainres.2008.08.067
[59] Liu, G., et al. (2009) alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neuroscience Letters, 454, 187-192. doi:10.1016/j.neulet.2009.02.056
[60] Cabin, D., Shimazu, K. and Murphy, D. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lack- ing α-synuclein. The Journal of Neuroscience, 22, 8797- 8807.
[61] Martín, E.D., et al. (2004) Stressor-related impairment of synaptic transmission in hippo-campal slices from al- pha-synuclein knockout mice. The European Journal of Neuroscience, 20, 3085-3091. doi:10.1111/j.1460-9568.2004.03801.x
[62] Castagnet, P.I., et al. (2005) Fatty acid incorporation is decreased in astrocytes cultured from alpha-synuclein gene-ablated mice. Journal of Neurochemistry, 94, 839- 849. doi:10.1111/j.1471-4159.2005.03247.x
[63] Golovko, M.Y., et al. (2007) Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. Journal of Neurochemistry, 101, 201-211. doi:10.1111/j.1471-4159.2006.04357.x
[64] Barceló-Coblijn, G., et al. (2007) Brain neutral lipids mass is increased in al-pha-synuclein gene-ablated mice. Journal of Neurochemistry, 101, 132-141. doi:10.1111/j.1471-4159.2006.04348.x
[65] Dauer, W., et al. (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 99, 14524-14529. doi:10.1073/pnas.172514599
[66] Drolet, R.E., et al. (2004) Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology, 25, 761-769. doi:10.1016/j.neuro.2004.05.002
[67] Nemani, V.M., et al. (2010) Increased expression of al- pha-synuclein reduces neurotransmitter release by inhi iting synaptic vesicle reclustering after endocytosis. Neuron, 65, 66-79. doi:10.1016/j.neuron.2009.12.023
[68] Abeliovich, A., et al. (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239-252. doi:10.1016/S0896-6273(00)80886-7
[69] Burré, J., et al. (2010) Alpha-synuclein promotes SNARE- complex assembly in vivo and in vitro. Science, 329, 1663-1667. doi:10.1126/science.1195227
[70] Askanas, V., et al. (2000) Novel Immunolocalization of [alpha]-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. Journal of Neuro-pathology and Experimental Neurology, 59, 592.
[71] Tamo, W., et al. (2002) Expression of alpha-synuclein, the precursor of non-amyloid beta component of Alzheimer’s disease amyloid, in human cerebral blood vessels. Neuroscience Letters, 326, 5-8. doi:10.1016/S0304-3940(02)00297-5
[72] Barbour, R., et al. (2008) Red blood cells are the major source of alpha-synuclein in blood. Neuro-Degenerative Diseases, 5, 55-59. doi:10.1159/000112832
[73] Tinsley, R.B., et al. (2010) Sensitive and specific detection of α-synuclein in human plasma. Journal of Neuroscience Research, 88, 2693-2700.
[74] Kim, S., et al. (2004) Alpha-synuclein induces apoptosis by altered expression in human peripheral lymphocyte in Parkinson’s disease. FASEB Journal, 18, 1615-1617.
[75] Ltic, S., et al. (2004) Alpha-synuclein is expressed in different tissues during human fetal development. Journal of Molecular Neuroscience, 22, 199-204. doi:10.1385/JMN:22:3:199
[76] Fujiwara, H., et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160-164.
[77] Anderson, J.P., et al. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synu clein in familial and sporadic Lewy body disease. The Journal of Biological Chemistry, 281, 29739-29752. doi:10.1074/jbc.M600933200
[78] Paleologou, K.E., et al. (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclei-noligomerization, and influences synuclein-membrane interactions. The Journal of Neuroscience, 30, 3184- 3198. doi:10.1523/JNEUROSCI.5922-09.2010
[79] Giasson, B.I., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science, 290, 985-989. doi:10.1126/science.290.5493.985
[80] Sampathu, D., Giasson, B. and Pawlyk, A. (2003) Ubiquitination of α-synuclein is not required for formation of pathological inclusions in α-synucleinopathies. The American Journal of Pathology, 163, 91-100. doi:10.1016/S0002-9440(10)63633-4
[81] Tofaris, G.K., et al. (2003) Ubiquitination of alpha-synu clein in Lewy bodies is a pathological event not associated with impairment of proteasome function. The Journal of Biological Chemistry, 278, 44405-44411. doi:10.1074/jbc.M308041200
[82] Baba, M., et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. The American Journal of Pathology, 152, 879-884.
[83] Campbell, B. and McLean, C. (2001) The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. Journal of Neurochemistry, 76, 87-96. doi:10.1046/j.1471-4159.2001.00021.x
[84] Liu, C-W., et al. (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: Implications for pathogenesis of Parkinson disease. The Journal of Biological Chemistry, 280, 22670- 22678. doi:10.1074/jbc.M501508200
[85] Lewis, K.A., et al. (2010) Abnormal neurites containing C-terminally truncated al-pha-synuclein are present in Alzheimer's disease without con-ventional Lewy body pa- thology. The American Journal of Pathology, 177, 3037- 3050. doi:10.2353/ajpath.2010.100552
[86] Li, W., et al. (2005) Ag-gregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease- linked mutations. Proceedings of the Na-tional Academy of Sciences of the United States of America, 102, 2162- 2167. doi:10.1073/pnas.0406976102
[87] Murray, I., et al. (2003) Role of α-synucleincarboxy- terminus on fibril formation in vitro. Biochemistry, 42, 8530-8540. doi:10.1021/bi027363r
[88] Hoyer, W., et al. (2004) Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synu- clein aggregation in vitro. Biochemistry, 43, 16233-16242. doi:10.1021/bi048453u
[89] Ulusoy, A., et al. (2010) Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha- synuclein-induced pathology. The European Journal of Neuroscience, 32, 409-422. doi:10.1111/j.1460-9568.2010.07284.x
[90] Uéda, K., et al. (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alz- heimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 11282- 11286. doi:10.1073/pnas.90.23.11282
[91] Yamin, G., Uversky, V.N. and Fink, A.L. (2003) Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Letters, 542, 147- 152. doi:10.1016/S0014-5793(03)00367-3
[92] Uversky, V.N., et al. (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain re- search. Molecular Brain Research, 134, 84-102. doi:10.1016/j.molbrainres.2004.11.014
[93] Paleologou, K.E., et al. (2008) Phosphorylation at Ser- 129 but not the phosphomimics S129E/D inhibits the fib- rillation of al-pha-synuclein. The Journal of Biological Chemistry, 283, 16895-16905. doi:10.1074/jbc.M800747200
[94] Kessler, J.C., Rochet, J.-C. and Lansbury, P.T. (2003) The N-terminal repeat domain of alpha-synuclein inhibits beta-sheet and amyloid fibril formation. Biochemistry, 42, 672-678. doi:10.1021/bi020429y
[95] Michell, A.W., et al. (2007) The effect of truncated human alpha-synuclein (1-120) on dopa-minergic cells in a transgenic mouse model of Parkinson’s disease. Cell Transplantation, 16, 461-474.
[96] Wakamatsu, M., et al. (2008) Selective loss of nigral dopamine neurons induced by overexpression of trun-cated human alpha-synuclein in mice. Neurobiology of Aging, 29, 574-585. doi:10.1016/j.neurobiolaging.2006.11.017
[97] Daher, J., Ying, M. and Banerjee, R. (2009) Conditional transgenic mice ex-pressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons. Molecular Neurodegeneration, 4, 34. doi:10.1186/1750-1326-4-34
[98] Muntané, G., Ferrer, I. and Martinez-Vicente, M. (2012) α-synuclein phosphorylation and truncation are normal events in the adult human brain. Neuro-science, 200, 106- 119. doi:10.1016/j.neuroscience.2011.10.042
[99] Tofaris, G.K., Layfield, R. and Spillantini, M.G. (2001) alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Letters, 509, 22-26. doi:10.1016/S0014-5793(01)03115-5
[100] Liu, C-W., et al. (2003) Endoproteolytic activity of the proteasome. Science, 299, 408-411. doi:10.1126/science.1079293
[101] Machiya, Y., et al. (2010) Phosphorylated alpha-synu- clein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. The Journal of Biologi- cal Chemistry, 285, 40732-40744. doi:10.1074/jbc.M110.141952
[102] Mishizen-Eberz, A.J., et al. (2003) Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by calpain I in vitro. Journal of Neu-rochemistry, 84, 836- 847. doi:10.1046/j.1471-4159.2003.01878.x
[103] Mishizen-Eberz, A.J., et al. (2005) Cleavage of alpha- synuclein by calpain: potential role in degradation of fi- brillized and nitrated species of alpha-synuclein. Biochemistry, 44, 7818-7829. doi:10.1021/bi047846q
[104] Kim, H., et al. (2006) Calpain-resistant fragment (s) of [alpha]-synuclein regulates the synuclein-cleaving activiity of 20S proteasome. Archives of Biochemistry and Biophysics, 455, 40-47. doi:10.1016/j.abb.2006.08.019
[105] Sevlever, D. and Jiang, P. (2008) Cathepsin D Is the main lysosomal enzyme involved in the degradation of α- synuclein and generation of its carboxy-terminally truncated species. Biochemistry, 47, 9678-9687. doi:10.1021/bi800699v
[106] Qiao, L., et al. (2008) Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity. Molecular Brain, 1, 17. doi:10.1186/1756-6606-1-17
[107] Cullen, V., et al. (2009) Cathepsin D expression level af- fects alpha-synuclein processing, aggregation, and toxicity in vivo. Molecular Brain, 2, 5. doi:10.1186/1756-6606-2-5
[108] Sung, J., et al. (2005) Proteolytic cleavage of extracellu- lar secreted α-synuclein via matrix metalloproteinases. The Journal of Biological Chemistry, 280, 25216-25224. doi:10.1074/jbc.M503341200
[109] Iwata, A., et al. (2003) Alpha-synuclein degradation by serine protease neurosin: im-plication for pathogenesis of synucleinopathies. Human Molec-ular Genetics, 12, 2625- 2635. doi:10.1093/hmg/ddg283
[110] Kasai, T., et al. (2008) Cleavage of normal and patho- logical forms of alpha-synuclein by neurosin in vitro. Neuroscience Letters, 436, 52-56. doi:10.1016/j.neulet.2008.02.057
[111] Tatebe, H., et al. (2010) Extracellular neurosin degrades α-synuclein in cultured cells. Neuroscience Research, 67, 341-346. doi:10.1016/j.neures.2010.04.008
[112] Sung, J., et al. (2005) Proteolytic cleavage of extracellu- lar secreted α-synuclein via matrix metalloproteinases. The Journal of Biological Chemistry, 280, 25216-25224. doi:10.1074/jbc.M503341200
[113] Levin, J., et al. (2009) In-creased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Experimental Neurology, 215, 201-208. doi:10.1016/j.expneurol.2008.10.010
[114] Choi, D.-H., et al. (2011) Role of matrix metalloproteinase 3-mediated al-pha-synuclein cleavage in dopa-minergic cell death. The Journal of Biological Chemistry, 286, 14168-14177. doi:10.1074/jbc.M111.222430
[115] Kim, K.S., et al. (2012) Proteolytic cleavage of extracel- lular α-synuclein by plasmin: Implications for Parkinson’s disease. The Journal of Biological Chemistry, 287, 24862- 24872. doi:10.1074/jbc.M112.348128
[116] Ohno, S., et al. (1984) Evolutionary origin of a cal- cium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature, 312, 566-570. doi:10.1038/312566a0
[117] Suzuki, K., et al. (1988) Regulation of activity of calcium activated neutral protease. Advances in Enzyme Regula- tion, 27, 153-169. doi:10.1016/0065-2571(88)90015-5
[118] Borghi, R., et al. (2000) Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci-ence Letters, 287, 65-67. doi:10.1016/S0304-3940(00)01153-8
[119] El-Agnaf, O.M.A., et al. (2003) Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB Journal, 17, 1945-1947.
[120] Lee, H.-J., Patel, S. and Lee, S.-J. (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. The Journal of Neuroscience, 25, 6016-6024. doi:10.1523/JNEUROSCI.0692-05.2005
[121] Yamashiro, K., et al. (1997) Molecular cloning of a novel trypsin-like serine protease (neurosin) preferentially ex- pressed in brain. Biochimicaet Biophysica Acta, 1350, 11-14. doi:10.1016/S0167-4781(96)00187-X
[122] Blobel, C.P. (2000) Remarkable roles of proteolysis on and beyond the cell surface. Current Opinion in Cell Biology, 12, 606-612. doi:10.1016/S0955-0674(00)00139-3

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.