Share This Article:

Use of the SPAD-502 in Estimating Nitrogen Content in Leaves and Grape Yield in Grapevines in Soils with Different Texture

Full-Text HTML Download Download as PDF (Size:1257KB) PP. 1546-1561
DOI: 10.4236/ajps.2012.311187    3,758 Downloads   5,762 Views   Citations


The SPAD reading may be used in estimating total nitrogen content (N) in leaves and even in estimating grape yield in grapevines. The objective of this study was to estimate total N content in leaves and grape yield using the SPAD-502 in grapevines submitted to nitrogen fertilization in soils with clayey and sandy texture. In 2008, two experiments were installed in the Southern region of Brazil. In experiment 1, Cabernet Sauvignon grapevines were planted in a soil with clayey texture and with application of 10, 20, 40 and 80 kg·N·ha-1·year-1. In experiment 2, Cabernet Sauvignon grapevines were planted in a soil with sandy texture and with the application of 0, 10, 15, 20, 40, 80 and 120 kg·N·ha-1·year-1. In the grapevines of the two experiments and during the period from 2008 to 2010, SPAD readings were made on leaves throughout the flowering period and at change in color of the berries using the portable chlorophyll meter Minolta-SPAD-502. The leaves were collected, dried, ground and submitted to analysis of the total N content. In addition, grape yield per hectare was evaluated. The SPAD-502 readings estimated the total N content in flowering and at change in color of the berries in the Cabernet Sauvignon grapevines grown on soils with clayey texture and sandy texture, especially in the first year of evaluation. However, the precision of the SPAD-502 readings is low, with there being no relationship between the SPAD-502 readings and grape yield.

Cite this paper

G. Brunetto, G. Trentin, C. Ceretta, E. Girotto, F. Lorensini, A. Miotto, G. Moser and G. Melo, "Use of the SPAD-502 in Estimating Nitrogen Content in Leaves and Grape Yield in Grapevines in Soils with Different Texture," American Journal of Plant Sciences, Vol. 3 No. 11, 2012, pp. 1546-1561. doi: 10.4236/ajps.2012.311187.


[1] G. Brunetto, C. A. Ceretta, J. Kaminski, G. W. B. Melo, C. R. Lourenzi, V. Furlanetto and A. Moraes, “Aplica??o de Nitrogênio em Videiras na Campanha Gaúcha: Produtividade e Carac-Terísticas Químicas do Mosto da Uva,” Ciencia Rural, Vol. 37, No. 2, 2007, pp. 389-393. doi:10.1590/S0103-84782007000200014
[2] G. Brunetto, C. A. Ceretta, J. Kaminski, G. W. B. Melo, E. Girotto, E. E. Trentin, C. R. Lourenzi, R. C. B. Vieira and L. C. Gatiboni, “Produ??o e Composi??o Química da uva de Videiras Cabernet Sauvignon Submetidas à Aduba??o Nitrogenada,” Ciência Rural, Vol. 39, No. 7, 2009, pp. 2035-2041. doi:10.1590/S0103-84782009005000162
[3] E. Fallahi, “Preharvest Nitrogen Optimization for Maximizing Yield and Postharvest Fruit Quality of Apples,” Acta Horticulturae, No. 448, 1997, pp. 415-417.
[4] A. K. Alva, S. Paramasivam and W. D. Graham, “Impact of Nitrogen Management Practices on Nutritional Status and Yield of Valencia Orange Trees and Groundwater Nitrate,” Journal of Environmental Quality, Vol. 27, No. 4, 1998, pp. 904-910. doi:10.2134/jeq1998.00472425002700040026x
[5] O. A. Rubio-Covarrubias, P. H. Brown, S. A. Weinbaum, R. S Johnson and R. I. Cabrera, “Evaluating Foliar Nitrogen Compounds as Indicators of Nitrogen Status in Prunus persica Trees,” International Society for Horticultural Science, Vol. 120, No. 1, 2009, pp. 27-33.
[6] D. Neilsen, E. J. Hogue, G. H. Neilsen and P. Parchomchuk, “Using SPAD-502 Values to Assess the Nitrogen Status of Apple Trees,” American Society for Horticultural Science, Vol. 30, No. 3, 1995, pp. 508-512.
[7] T. Thomidis and C. Tsipouridis, “Influence of Rootstocks, pH, Iron Supply (in Nutrient Solutions) and Agrobacterium radiobacter on Chlorophyll and Iron Concentration in Leaves of a Peach Variety,” Journal of Plant Nutrition and Soil Science, Vol. 28, 2005, pp.1833-1842.
[8] F. J. Peryea and R. Kammereck, “Use of Minolta SPAD-502 Chlorophyll Meter to Quantify the Effectiveness of Mid-Summer Trunk Injection of Iron on Chlorotic Pear Trees,” Journal of Plant Nutrition and Soil Science, Vol. 20, 1997, pp. 1457-1463.
[9] C. S. Chang and L. R Chang, “Two Rapid Determination Methods for Total Chlorophyll Content in Fruit Tree Leaves,” Taichung District Agricultural Improvement Station, Vol. 59, 1998, pp. 37-45.
[10] D. Rupp and L. Trankle, “A Non-Destructive Measurement Method for Chlorophyll in Grapevines,” Mitteilungen Klosterneuburg, Rebe und Wein, Obstbau und Fruechteverwertung, Vol. 45, No. 5-6, 1995, pp. 139-142.
[11] D. Porro, C. Dorigatti, M. Stefanini and A. Ceschini, “Use of SPAD Meter in Diagnosis of Nutritional Status in Apple and Grapevine,” International Society for Horticultural Science, Vol. 564, 2001, pp. 243-252.
[12] D. Porro, M. Bertamini, C. Dorigatti, M. Stefanini and A. Ceschini, “Lo SPAD nella Diagnosi dello Stato Nutrizionale della Vite,” L’Informatore Agrario, Vol. 57, 2001, pp. 49-55.
[13] J. M. Swiader and A. Moore, “SPAD-Chlorophyll Response to Nitrogen Fertilization and Evaluation of Nitrogen Status in Dryland and Irrigated Pumpkins,” Journal of Plant Nutrition and Soil Science, Vol. 25, 2002, pp. 1089-1100.
[14] S. C. Chapman and H. J. Barreto, “Using Chlorophyll Meter to Estimate Specific Leaf Nitrogen of Tropical Maize during Vegetative Growth,” Agronomy Journal, Vol. 89, No. 4, 1997, pp. 557-562. doi:10.2134/agronj1997.00021962008900040004x
[15] P. L. Minotti, D. E. Halseth and J. B. Sieckza, “Field Chlorophyll Measurements to Assess the Nitrogen Status of Potato Varieties,” American Society for horticultural Science, Vol. 29, No. 12, 1994, pp. 1497-1500.
[16] Soil Survey Staff, “Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys,” 2nd Edition, US Government Printing Office, Washington, 1999.
[17] CQFS-RS/SC, “Manual de Aduba??o e Calagem para os Estados do Rio Grande do Sul e de Santa Catarina,” 10th Edition, SBCS-NRS, Porto Alegre, 2004.
[18] M. J. Tedesco, C. Gianello, C. A. Bissani, H. Bohnen and S. J. Volkweiss, “Análise do Solo, Planta e Outros Materiais,” 2nd Edition, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1995.
[19] P. Camargo and P. C. Sentelhas, “Avalia??o do Desempenho de Diferentes Métodos de Estimativa da Evapotranspiracao Potencial no Estado de S?o Paulo, Brasil,” Revista Brasileira de Meteorologia, Vol. 5, 1997, pp. 89-97.
[20] C. J. Willmott, “On the Validation Models,” Physical Geographe, Vol. 2, 1981, pp. 184-194.
[21] N. A. Streck, “A Generalized Nonlinear Air Temperature Response Function for Node Appearance Rate in Muskmelon (Cucumis melo L.),” Revista Brasileira de Meteorologia, Vol. 10, No. 2, 2002, pp. 105-111.
[22] P. R. Schneider, “Análise de Regress?o Aplicada à Engenharia Florestal,” 2nd Edition, UFSM, Santa Maria, 1998.
[23] S. Agehara and D. D. Warncke, “Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources,” Soil Science Society of America Journal, Vol. 69, No. 6, 2005, pp. 1844-1855. doi:10.2136/sssaj2004.0361
[24] T. R. Bates, R. M. Dunst and P. Joy, “Seasonal Dry Matter, Starch, and Nutrient Distribution in Concord Grapevine Roots,” American Society for Horticultural Science, Vol. 37, No. 2, 2002, pp. 313-316.
[25] C. Zapata, E. Deléens, S. Chaillou and C. Magné, “Partitioning and Mobilization of Starch and N Reserves in Grapevine (Vitis vinifera L.),” Journal of Plant Physiology, Vol. 161, 2004, pp. 1031-1040. doi:10.1016/j.jplph.2003.11.009
[26] G. Brunetto, J. Kaminski, G. W. B. Melo, L. C. Gatiboni and S. Urquiaga, “Absor??o e Redistribui??o do Nitrogenio Aplicado via Foliar em Videiras Jovens,” Revista Brasileira de Fruticultura, Vol. 27, No. 1, 2005, pp. 110-114. doi:10.1590/S0100-29452005000100030
[27] G. Brunetto, J. Kaminski, G. M. B. Melo and D. S. Rheinheimer, “Recupera??o e Distribui??o do Nitrogenio Fornecido a Videiras Jovens,” Pesquisa Agropecuária Brasileira, Vol. 41, No. 8, 2006, pp. 1299-1304. doi:10.1590/S0100-204X2006000800013
[28] G. Brunetto, M. Ventura, F. Scandellari, C. A. Ceretta, J. Kaminski, G. W. B. Melo and M. Tagliavini, “Nutrients Release during the Decomposition of Mowed Perennial Ryegrass and White Clover and Its Contribution to Ni-trogen Nutrition of Grapevine,” Nutrient Cycling in Agro-ecosystems, Vol. 90, 2011, pp. 299-308. doi:10.1007/s10705-011-9430-8
[29] M. Keller, R. M. Pool and T. Henick-Kling, “Excessive Nitrogen Supply and Shoot Trimming Can Impair Colour Development in Pinot Noir Grapes and Wine,” Australian Journal of Grape and Wine Research, Vol. 5, No. 2, 1999, pp. 45-55. doi:10.1111/j.1755-0238.1999.tb00151.x
[30] E. Duchêne, C. Schneider and J. P. Gaudillère, “Effects of Nitrogen Nutrition Timing on Fruit Set of Grapevine cv. Grenache,” Vitis, Landau, Vol. 40, 2001, pp. 45-46.
[31] D. W. Reeves, P. L. Mask, C. W. Wood and D. P. Delaney, “Determination of Wheat Nitrogen Status with a Hand-Held Chlorophyll Meter: Influence of Management Practices,” Journal of Plant Nutrition and Soil Science, Vol. 16, No. 5, 1993, pp. 781-796.
[32] W. Feibo, W. Lianghuan and X. Fuha, “Chlorophyll Meter to Predict Nitrogen Sidedress Requirements for Short-Season Cotton,” Field Crops Research, Vol. 56, No. 3, 1998, pp. 309-314. doi:10.1016/S0378-4290(97)00108-1
[33] T. Matsunaka, Y. Watanabe, T. Miyawaki and N. Ichikawa, “Prediction of Grain Protein Content in Winter Wheat through Leaf Color Measurements Using a Chlorophyll Meter,” Soil Science & Plant Nutrition, Vol. 43, 1997, pp. 127-134. doi:10.1080/00380768.1997.10414721
[34] G. Lemaire, M. Jeuffroy and F. Gastal, “Diagnosis Tool for Plant and Crop N Status in Vegetative Stage Theory and Practices for Crop N Management,” European Journal of Agronomy, Vol. 28, No. 4, 2008, pp. 614-624. doi:10.1016/j.eja.2008.01.005
[35] R. D Marquard and J. L. Tipton, “Relationship between Extractablechlorophyllandan in Situ Method to Estimate Leaf Greenness,” American Society for Horticultural Science, Vol. 22, 1987, pp. 13-27.
[36] T. S. Hawkins, E. S. Gardiner and G. S. Comer, “Modeling the Relationship between Extractable Chlorophyll and SPAD-502 Readings for Endangered Plant Species Research,” Journal for Nature Conservation, Vol. 17, No. 2, 2009, pp. 123-127. doi:10.1016/j.jnc.2008.12.007
[37] M. R. Steele, A. A. Gitelson and D. C. Rundquist, “A Comparison of Two Techniques for Non-Destructive Measurement of Chlorophyll Content in Grapevine Leaves,” Agronomy Journal, Vol. 100, No. 3, 2008, pp. 779-782. doi:10.2134/agronj2007.0254N
[38] D. Porro, M. Stefanini, O. Failla and G. Stringari, “Optimal Leaf Sampling Time in Diagnosis of Grapevine Nutritional Status,” International Society for Horticultural Science, Vol. 383, 1995, pp. 135-142.
[39] G. H. Neilsen and D. Neilsen, “Orchard Nutrition to Maximize Crop Quality and Minimize Environmental Degradation,” International Society for Horticultural Science, Vol. 448, 1997, pp. 365-373.
[40] K. Barlow, W. Bond, B. Holzapfel, J. Smith and R. Hutton, “Nitrogen Concentrations in Soil Solution and Surface Run-Off on Irrigated Vineyards in Australia,” Australian Journal of Grape and Wine Research, Vol. 15, No. 2, 2009, pp. 131-143. doi:10.1111/j.1755-0238.2008.00042.x

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.