Removal of Chromium(III) from the Waste Solution of an Indian Tannery by Amberlite IR 120 Resin

Abstract

The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other similar resins. The parameters that were optimized include effect of mixing time, pH, loading and elution behaviours of chromium(III) for this resin. Sorption of chromium(III) on Amberlite IR 120 followed Freundlich isotherm and Langmuir isotherm model, and the maximum sorption capacity was determined to be 142.86 mg Cr(III)/g of the resin. Higher Freundlich constant (Kf) values (6.30 and 13.46 for aqueous feed of 500 and 1000 ppm Cr(III)) indicated strong chemical interaction through ion exchange mechanism of the metal ion with the resin. The kinetic data showed good fit to the Lagergren first order model for extraction of chromium(III). Desorption of chromium(III) from the loaded resin increased with the increase in concentration of eluent (5-20% H2SO4). With 20% (v/v) sulphuric acid solution 94% chromium(III) was eluted in three stages. Elution of the Cr(III) in the column experiments was however, found to be lower (82%) than that of the shake flask data. In case of Indian tannery’s waste solution, it was observed that almost total chromium was extracted in four stages with Amberlite IR 120.

Share and Cite:

Meshram, P. , Sahu, S. , Pandey, B. , Kumar, V. and Mankhand, T. (2012) Removal of Chromium(III) from the Waste Solution of an Indian Tannery by Amberlite IR 120 Resin. International Journal of Nonferrous Metallurgy, 1, 32-41. doi: 10.4236/ijnm.2012.13005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] CPCB, “Recovery of Better Quality Reusable Salt from Soak Liquor of Tanneries in Solar Evaporation Pans,” Central Pollution Control Board (CPCB) Ministry of Environment & Forests Control of Urban Pollution Series: Cups/2009-10, 2009.
[2] P. Chandra, S. Sinha and U. N. Rai, “Bioremediation of Cr from Water and Soil by Vascular Aquatic Plants,” In: E. L. Kruger, T. A. Anderson and J. R. Coats, Eds., Phytoremediation of Soil and Water Contaminants, ACS Symposium Series #664, American Chemical Society, Washington DC, 1997, pp. 274-282.
[3] B. D. Pandey, G. Cote and D. Bauer, “Extraction of Chromium(III) from Spent Tanning Baths,” Hydrometallurgy, Vol. 40, No. 3, 1996, pp. 343-357. doi:10.1016/0304-386X(95)00006-3
[4] Q. Chen, Z. Luo, C. Hills, G. Xue and M. Tyrer, “Precipitation of Heavy Metals from Wastewater Using Simulated Flue Gas: Sequent Additions of Fly Ash, Lime and Carbon Dioxide,” Water Research, Vol. 43, No. 10, 2009, pp. 2605-2614. doi:10.1016/j.watres.2009.03.007
[5] P. D. Johnson, P. Girinathannair, K. N. Ohlinger, S. Ritchie, L. Teuber and J. Kirby, “Enhanced Removal of Heavy Metals in Primary Treatment Using Coagulation and Flocculation,” Water Environment Research, Vol. 80, No. 5, 2008, pp. 472-479.
[6] S. Santosa, D. Siswanta, S. Sudiono and R. Utarianingrum, “Chitin-Humic Acid Hybrid as Adsorbent for Cr(III) in Effluent of Tannery Wastewater Treatment,” Applied Surface Science, Vol. 254, No. 23, 2008, pp. 7846-7850. doi:10.1016/j.apsusc.2008.02.102
[7] S. K. Sahu, V. K. Verma, D. Bagchi, V. Kumar and B. D. Pandey, “Recovery of Chromium(VI) from Electroplating Effluent by Solvent Extraction with Tri-n-Butyl Phosphate,” Indian Journal of Chemical Technology, Vol. 15, No. 4, 2008, pp. 397-402.
[8] S. Verbych, N. Hilal, G. Sorokin and M. C. Leaper, “Ion Exchange Extraction of Heavy Metal Ions from Waste- water,” Separation Science and Technology, Vol. 39, No. 9, 2004, pp. 2031-2040. doi:10.1081/SS-120039317
[9] G. Zupancic and A. Jemec, “Anaerobic Digestion of Tannery Waste: Semi-Continuous and Anaerobic Sequencing Batch Reactor Processes,” Bioresource Technology, Vol. 101, No. 1, 2010, pp. 26-33. doi:10.1016/j.biortech.2009.07.028
[10] M. Pazouki and A. Moheb, “An Innovative Membrane Method for the Separation of Chromium Ions from Solutions Containing Obstructive Copper Ions,” Desalination, Vol. 274, No. 1-3, 2011, pp. 246-254.
[11] C. Justina, M. Elsa, P. Ana, L. Ana, L., S. Luis and N. Maria, “Membrane-Based Treatment for Tanning Waste- waters,” Canadian Journal of Civil Engineering, Vol. 36, No. 2, 2009, pp. 356-362. doi:10.1139/S08-053
[12] T. A. Kurniawan, Y. S. C. Gilbert, W. H. Lo and S. Babel, “Physico-Chemical Treatment Techniques for Wastewater Laden with Heavy Metals,” Chemical Engineering Journal, Vol. 118, No. 1-2, 2006, pp. 83-98. doi:10.1016/j.cej.2006.01.015
[13] I. Lee, Y. Kuan and J. Chern, “Equilibrium and Kinetics of Heavy Metal Ion Exchange,” Journal of Chinese Institute of Chemical Engineers, Vol. 38, No. 1, 2007, pp. 71- 84. doi:10.1016/j.jcice.2006.11.001
[14] J. S. Kentish and G. W. Stevens, “Innovations in Separation Technology for the Recycling and Reuse of Liquid Waste Streams,” Chemical Engineering Journal, Vol. 84, No. 2, 2001, pp. 149-159. doi:10.1016/S1385-8947(01)00199-1
[15] S. Yalcin, R. Apak, J. Hizal and H. Afsar, “Recovery of Copper(II) and Chromium(III) from Electroplating Indus- try Wastewater by Ion Exchange,” Separation Science and Technology, Vol. 36, No. 10, 2001, pp. 2181-2196. doi:10.1081/SS-100105912
[16] J. A. S. Tenorio and D. C. R. Espinosa, “Treatment of Chromium Plating Process Effluents with Ion Exchange Resins,” Waste Management, Vol. 21, No. 7, 2001, pp. 637-642. doi:10.1016/S0956-053X(00)00118-5
[17] A. Agrawal, V. Kumar and B. D. Pandey, “Remediation Options for the Treatment of Electroplating and Leather Tanning Effluent Containing Chromium: A Review,” Mi- neral Processing and Extractive Metallurgy Review, Vol. 27, No. 2, 2006, pp. 99-130. doi:10.1080/08827500600563319
[18] D. Petruzzelli, R. Passino, M. Santori and G. Tiravanti, “Industrial Waste Management, the Case of the Tannery Industry in Chemical Water and Wastewater Treatment III,” Springer-Verlag, Berlin, 1994.
[19] D. Petruzzelli, R. Passino and G. Tiravanti, “Ion Exchange Process for Chromium Removal and Recovery from Tan- nery Wastes,” Industrial Engineering and Chemical Re- search, Vol. 34, 1995, pp. 2612-2617. doi:10.1021/ie00047a009
[20] S. Kocaoba and G. Akcin, “Removal of Chromium(III) and Cadmium(II) from Aqueous Solutions,” Desalination, Vol. 180, No. 1-3, 2005, pp. 151-156. doi:10.1016/j.desal.2004.12.034
[21] F. J. Alguacil, M. Alonso and L. J. Lozano, “Chromium(III) Recovery from Waste Acid Solution by Ion Exchange Processing Using Amberlite-IR 120 Resin: Batch and Continuous Ion Exchange Modeling,” Chemosphere, Vol. 57, No. 8, 2004, pp. 789-793. doi:10.1016/j.chemosphere.2004.08.085
[22] S. Kocaoba and G. Akcin, “Removal and Recovery of Chromium and Chromium Speciation with MINTEQA2,” Talanta, Vol. 57, No. 1, 2002, pp. 23-30. doi:10.1016/S0039-9140(01)00677-4
[23] N. Kabay, N. Gizli, M. Demircioglu, M. Yuksel, A. Jyo, K. Yamabe and T. Shuto, “Cr(III) Removal by Macrore- ticular Chelating Ion Exchange Resins,” Chemical Engi- neering Communications, Vol. 190, No. 5-8, 2003, pp. 813-822. doi:10.1080/00986440302114
[24] S. A. Cavaco, S. L. Fernandes, M. M. Quina and L. M. G. Ferreira, “Removal of Chromium from Electroplating Industry Effluents by Ion-Exchange Resins,” Journal of Ha- zardous Materials, Vol. 144, No. 3, 2007, pp. 634-638. doi:10.1016/j.jhazmat.2007.01.087
[25] S. Fernandes, S. A. Cavaco, M. J. Quina and L. M. G. Ferreira, “Selective Separation of Chromium(III) from Electroplating Effluents by Ion-Exchange Processes,” Proceedings of European Congress of Chemical Engi- neering (ECCE-6),” Copenhagen, 2007.
[26] S. A. Cavaco, S. Fernandes, C. M. Augusto, M. J. Quina and L. M. G. Ferreira, “Evaluation of Chelating Ion-Ex- change Resins for Separating Cr(III) from Industrial Ef- fluents,” Journal of Hazardous Materials, Vol. 169, No. 1-3, 2009, pp. 516-523. doi:10.1016/j.jhazmat.2009.03.129
[27] S. Pramanik, S. Dey and P. Chattopadhyay, “A New Che- lating Resin Containing Azophenolcarboxylate Function- ality: Synthesis, Characterization and Application to Chro- mium Speciation in Wastewater,” Analytica Chimica Acta, Vol. 584, No. 2, 2007, pp. 469-476. doi:10.1016/j.aca.2006.11.041
[28] P. Chattopadhyay, C. Sinha and D. K. Pal, “Preparation and Properties of a New Chelating Resin Containing Ima- dazolylazo Groups,” Fresenius’ Journal of Analytical Che- mistry, Vol. 357, No. 4, 1997, pp. 368-372.
[29] F. Gode and E. Pehlivan, “A Comparative Study of Two Chelating Ion-Exchange Resins for the Removal of Chro- mium (III) from Aqueous Solution,” Journal of Hazardous Materials, Vol. 100, No. 1-3, 2003, pp. 231-243. doi:10.1016/S0304-3894(03)00110-9
[30] S. K. Sahu, P. Meshram, B. D. Pandey, V. Kumar and T. R. Mankhand, “Removal of Chromium(III) by Cation Exchange Resin, Indion 790 for Tannery Waste Treatment,” Hydrometallurgy, Vol. 99, No. 3-4, 2009, pp. 170-174. doi:10.1016/j.hydromet.2009.08.002
[31] F. Gode and E. Pehlivan, “Removal of Chromium (III) from Aqueous Solutions Using Lewatit S 100: The Effect of pH, Time, Metal Concentration and Temperature,” Journal of Hazardous Materials, Vol. 136, No. 2, 2006, pp. 330-337. doi:10.1016/j.jhazmat.2005.12.021
[32] S. Rengaraj, K. H. Yeon and S. H. Moon, “Removal of Chromium from Water and Wastewater by Ion Exchange Resins,” Journal of Hazardous Materials, Vol. 87, No. 1-3, 2001, pp. 273-287. doi:10.1016/S0304-3894(01)00291-6
[33] M. Murugananthan, G. BhaskarRaju and S. Prabhakar, “Separation of Pollutants from Tannery Effluents by Electro Flotation,” Separation and Purification Technology, Vol. 40, No. 1, 2004, pp. 69-75. doi:10.1016/j.seppur.2004.01.005
[34] T. Reemtsma and M. Jekel, “Dissolved Organics in Tannery Wastewaters and Their Alteration by a Combined Anaerobic and Aerobic Treatment,” Water Research, Vol. 31, No. 5, 1997, pp. 1035-1046. doi:10.1016/S0043-1354(96)00382-X
[35] G. McKay, H. S. Blair and J. R. Gardner, “Adsorption of Dyes on Chitin. I. Equilibrium Studies,” Journal of Applied Polymer Science, Vol. 27, No. 8, 1982, pp. 3043- 3057. doi:10.1002/app.1982.070270827
[36] S. Lagergren, “About the Theory of So-Called Adsorption of Soluble Substances, The Royal Swedish Academy of Sciences,” Handlingar, Vol. 24, 1898, pp. 1-39.
[37] Y. S. Ho and G. McKay, “Pseudo-Second Order Model for Sorption Processes,” Process Biochemistry, Vol. 34, No. 5, 1999, pp. 451-465. doi:10.1016/S0032-9592(98)00112-5
[38] P. W. Ramteke, S. Awasthi, T. Srinath and B. Joseph, “Efficiency Assessment of Common Effluent Treatment Plant (CETP) Treating Tannery Effluents,” Environmental Monitoring and Assessment, Vol. 169, No. 1-4, 2010, pp. 125-131. doi:10.1007/s10661-009-1156-6.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.