Synergistic Antibacterial Performance of a Cu/WO3-Added PTFE Particulate Superhydrophobic Composite under Visible-Light Exposure

Abstract

Addition of TiO2 to a polytetrafluoroethylene (PTFE) particle-dispersed composite contributes to the self-cleaning properties of the water-repellent composite. However, its application is limited to outdoor usage or under ultraviolet (UV) irradiation. In this study, a novel visible-light-sensitive photocatalytic and superhydrophobic material was developed by adding Cu/WO3 to a PTFE particulate composite material to overcome this deficit. A remarkable property of this novel composite material is the synergistic antibacterial performance against Escherichia coli (E. coli), Staphylo-coccus aureus, and methicillin-resistant Staphylococcus aureus compared with the addition of Cu/WO3 without PTFE particles material. During 24-h exposure in visible light at 2000 lx, the number of viable cells of the three strains on the surface of the 8wt% Cu/WO3-added PTFE particulate composite decreased from 2 – 4 × 105 colony-formation units (CFUs) to less than 10, the limit of detection. This bactericidal rate is four times higher than that of 8wt% Cu/WO3 without PTFE particles material, which is attributed to the air trapped in the rough surface of the novel material providing additional oxygen to the photocatalytic reaction. Even for exposure to visible light at 100 lx, the decrease in CFUs of E. coli on the 12wt% Cu/WO3-added PTFE particulate composite reached nearly 2.0 logs. The characterization of the Cu/WO3-added PTFE particulate composite indicated that the composite material containing 80wt% PTFE maintained a superhydrophobic or water-repellent property with a water contact angle >150, although the Cu/WO3 in the composite material remained hydrophilic under visible light. The Cu/WO3-added PTFE particulate composite displayed photo-catalytic reactions to decompose oleic acid adsorbed on its surface and gaseous acetaldehyde under UV-A and visible-light illumination. All results demonstrate that the Cu/WO3-added PTFE particulate composite material may be used in sterilization, as a water repellent, for self-cleaning, and in the oxidative decomposition of volatile organic compounds (VOC) both indoors and outdoors.

Share and Cite:

Y. Yao, K. Yamauchi, G. Yamauchi, T. Ochiai, T. Murakami and Y. Kubota, "Synergistic Antibacterial Performance of a Cu/WO3-Added PTFE Particulate Superhydrophobic Composite under Visible-Light Exposure," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 421-430. doi: 10.4236/jbnb.2012.34042.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Yamauchi, H. Saito and K. Takai, “PTFE Based Water Repellent Coating for Telecommunication Antennas,” IEICE Transactions on Electronics, Vol. E83-C, No. 7, 2000, pp. 1139-1141.
[2] H. Saito, K. Takai, H. Takazawa and G. Yamauchi, “A Study on Snow Sticking Weight to Water Repellent Coating,” Materials Science Research International, Vol. 3, No. 4, 1997, pp. 216-219.
[3] C.-T. Hsieh, J.-M. Chen, R.-R. Kuo, T.-S. Lin and C.-F. Wu, “Influence of Surface Roughness on Water- and Oil-Repellent Surfaces Coated with Nanoparticles”, Applied Surface Science, Vol. 240, No. 1-4, 2005, pp. 318-326. doi:10.1016/j.apsusc.2004.07.016
[4] Y. Yao, Y. Ohko, Y. Sekiguchi, A. Fujishima and Y. Kubota, “Self-Sterilization Using Silicone Catheters Coated with Ag and TiO2 Nanocomposite Thin Film,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 85B, No. 2, 2008, pp. 453-460. doi:10.1002/jbm.b.30965
[5] Y. Yao, T. Ochiai, H. Ishiguro, R. Nakano and Y. Kubota, “Antibacterial Performance of a Novel Photocatalytic-Coated Cordierite Foam for Use in Air Cleaners,” Applied Catalysis B: Environmental, Vol. 106, No. 3-4, 2011, pp. 592-599. doi:10.1016/j.apcatb.2011.06.020
[6] P. S. M. Dunlop, C. P. Sheeran, J. A. Byrne, M. A. S. McMahon, M. A. Boyle and K. G. McGuigan, “In-activation of Clinically Relevant Pathogens by Photocatalytic Coatings,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 216, No. 2-3, 2010, pp. 303-310. doi:10.1016/j.jphotochem.2010.07.004
[7] H. Irie, S. Washizuka, N. Yoshino and K. Hashimoto, “Visible-Light Induced Hydrophilicity on Nitrogen-Substituted Titanium Dioxide Films,” Chemical Communications, Vol. 9, No. 11, 2003, pp. 1298-1299. doi:10.1039/b302975a
[8] M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima and M. Anpo, “Preparation of Nitrogen-Substituted TiO2 Thin Film Photocatalysts by the Radio Frequency Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity under Visible Light Irradiation,” The Journal of Physical Chemistry B, Vol. 110, No. 50, 2006, pp. 25266-25272. doi:10.1021/jp064893e
[9] H. E. Kamali, E. Marzbanrad, C. Zamani and B. Raissi, “Nanocasting Synthesis of Ultrafine WO3 Nanoparticles for Gas Sensing Applications,” Nanoscale Research Letters, Vol. 5, No. 2, 2009, pp. 370-373. doi:10.1007/s11671-009-9490-8
[10] G. Xi, B. Yue, J. Cao and J. Ye, “Fe3O4 Hierachical Core-Shell Structure: High-Performance and Recyclable Visible-Light Photocatalysis,” Chemistry—A European Journal, Vol. 17, No. 18, 2011, pp. 5145-5154. doi:10.1002/chem.201002229
[11] M. Ashokumar and P. Maruthamuthu, “Preparation and Characterization of Doped WO3 Photocatalyst Powders,” Journal of Materials Science, Vol. 24, No. 6, 1989, pp. 2135-2139. doi:10.1007/BF02385433
[12] H. Irie, S. Miura, K. Kamiya and K. Hashimoto, “Efficient Visible Light-Sensitive Photocatalysts: Grafting Cu(II) Ions onto TiO2 and WO3 Photocatalysts,” Chemical Physics Letters, Vol. 457, No. 1-3, 2008, pp. 202-205. doi:10.1016/j.cplett.2008.04.006
[13] Y. Kitazaki and T. Hata, The Adhesion Society of Japan, Vol. 8, No. 3, 1972, pp. 131-137.
[14] JIS R 1702, “Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Antibacterial Activity of Photocatalytic Products under Photo Irradiation and Efficacy,” 2006.
[15] JIS R 1703-1, “Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Self-Cleaning Performance of Photocatalytic Materials—Part 1: Measurement of Water Contact Angle,” 2007.
[16] JIS R 1701-2, “Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air Purification Performance of Photocatalytic Materials—Part 2: Removal of Acetaldehyde,” 2008.
[17] G. Yamauchi, J. D. Miller, H. Saito, K. Takai, H. Takazawa and T. Ueda, “The Wetting Characteristics of PTFE Particulate Composites,” Materials Transactions, Vol. 37, No. 4, 1996, pp. 721-728.
[18] J. D. Miller, S. Veeramasuneni, J. Drelich, M. R. Yalamanchili and G. Yamauchi, “Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin Films,” Polymer Engineering & Science, Vol. 36, No. 14, 1996, pp. 1849-1855. doi:10.1002/pen.10580
[19] R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” Industrial & Engineering Chemistry Research, Vol. 28, No. 8, 1936, pp. 988-994. doi:10.1021/ie50320a024
[20] A. B. D. Cassie, “Contact Angle,” Discussions of the Faraday Society, Vol. 3, 1948, pp. 11-16. doi:10.1039/df9480300011
[21] A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties,” Langmuir, Vol. 16, No. 17, 2000, pp. 7044-7047. doi:10.1021/la000155k
[22] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda, “The Lowest Surface Free Energy Based on ?CF3 Alignment,” Langmuir, Vol. 15, No. 13, 1999, pp. 4321-4323. doi:10.1021/la981727s
[23] J. D. Edgeworth, D. F. Treacher and S. T. Eykyn, “A 25-Year Study of Nosocomial Bacteremia in an Adult Intensive Care Unit,” Critical Care Medicine, Vol. 27, No. 8, 1999, pp. 1648-1650. doi:10.1097/00003246-199908000-00002
[24] S. M. Smith, R. H. K. Eng, P. Bate, P. Fan-Havard and F. Tecson-Tumang, “Mechanisms of Antimicrobial Resistance and Implications for Epidemiology,” Journal of Antimicrobial Chemotherapy, Vol. 26, No. 4, 1990, pp. 567-572. doi:10.1093/jac/26.4.567
[25] G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin and S. Dukan, “The Bactericidal Effect of TiO2 Photocatalysis Involves Adsorption onto Catalyst and the Loss of Membrane Integrity,” FEMS Microbiology Letters, Vol. 258, No. 1, 2006, pp. 18-24. doi:10.1111/j.1574-6968.2006.00190.x
[26] P.-C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby, “Bactericidal Activity of Photocatalytic TiO2 Reaction: Toward an Understanding of Its Killing Mechanism,” Applied and Environmental Microbiology, Vol. 65, No. 9, 1999, pp. 4094-4098.
[27] W. A. Jacoby, P.-C. Maness, E. J. Wolfrum, D. M. Blake and J. A. Fennell, “Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air,” Environmental Science & Technology, Vol. 32, No. 17, 1998, pp. 2650-2653. doi:10.1021/es980036f
[28] W. Dai, X. Wang, P. Liu, Y. Xu, G. Li and X. Fu, “Effects of Electron Transfer between TiO2 Films and Conducting Substrates on the Photocatalytic Oxidation of Organic Pollutants,” The Journal of Physical Chemistry B, Vol. 110, No. 48, 2006, pp. 13470-13476. doi:10.1021/jp061483h
[29] J. Rathousky, V. Kalousek, M. Kolar, J. Jirkovsky and P. Bartakb, Catalysis Toda, Vol. 161, 2011, pp. 202-208.
[30] G. Leonardos, D. Kendall and N. Barnard, “Odor Threshold Determinations of 53 Odorant Chemicals,” Journal of the Air Pollution Control Association, Vol. 19, No. 2, 1969, pp. 91-95. doi:10.1080/00022470.1969.10466465
[31] J. E. Amoore and E. Hautala, “Odor as an Aid to Chemical Safety: Odor Thresholds Compared with Threshold Limit Values and Volatilities for 214 Industrial Chemicals in Air and Water Dilution,” Journal of Applied Toxicology, Vol. 3, No. 6, 1983, pp. 272-290. doi:10.1002/jat.2550030603

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.