Synthesis and Optical Characterization of Silver Doped Sodium Borate Glasses

Abstract

Silver doped sodium borate glasses prepared by melt-quenching technique were checked by XRD technique for their amorphous nature. It is observed that the molar volume increases with increasing Ag2O content leading to open struc- ture. Fourier Transform Infrared spectroscopy (FTIR) reveals the formation of BO3 and BO4 groups upon addition of silver oxide as modifier. From the Ultraviolet-Visible (UV-VIS) absorption spectra it is seen that the optical band gap increases with the increase of Ag2O content. Urbach energy is observed between 0.55 - 0.77 eV. The results obtained from molar volume, Fourier Transform Infrared spectroscopy and band gap energy measurements are in agreement with each other and nearly give the similar information about the studied glasses.

Share and Cite:

V. Sharma, S. Singh, G. Mudahar and K. Thind, "Synthesis and Optical Characterization of Silver Doped Sodium Borate Glasses," New Journal of Glass and Ceramics, Vol. 2 No. 4, 2012, pp. 111-115. doi: 10.4236/njgc.2012.24019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. A. Angell, “Fast Ion Motion in Glassy and Amorphous Materials,” Solid State Ionics, Vol. 9-10, 1983, pp. 3-16. HUdoi:10.1016/0167-2738(83)90206-0U
[2] S. Chandra and S. S. Sekhon, “Mixed Cation Effect in Silver Borate Ion Conducting Glass,” Journal of Materials Science, Vol. 34, 1999, p. 2899.
[3] L. Murawski, C. H. Chung and J. D. Mackenzie, “Electrical Properties of Semiconducting Oxide Glasses,” Journal of Non-Crystalline Solids, Vol. 32, No. 1-3, 1979, pp. 91-104. HUdoi:10.1016/0022-3093(79)90066-8U
[4] M. Sayer, A. Mansingh, M. Pollak, et al., “Noncrystalline Semiconductors,” CRC Press, Boca Raton, Vol. 3, 1987.
[5] H. S. Ryu, J. K. Lee, J. H. Seo, H. Kim, K. S. Hong, D. J. Kim, J. H. Lee, D. H. Lee, B. S. Chang, C. K. Lee and S. S. Chung, “Novel Bioactive and Biodegradable Glass Ceramics with High Mechanical Strength in the CaOSiO2-B2O3 System,” Journal of Biomedical Materials Research Part A, Vol. 68, No. 1, 2004, pp. 79-89. HUdoi:10.1002/jbm.a.20029U
[6] M. Sharma, K. S. Thind, G. Sharma, V. Rajendran, K. Singh, A. V. Gayathri Devi and S. Aravindan, “Structural and Acoustic Investigations of Calcium Borate Glasses,” Physica Status Solidi (A), Vol. 203, No. 10, 2006, pp. 2356-2364. HUdoi:10.1002/pssa.200622140U
[7] M. Pal, B. Roy and M. Pal, “Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides,” International Journal of Modern Physics, Vol. 2, 2006, p. 1062. HUdoi:10.4236/jmp.2011.29129U
[8] L. Stoch and M. Sroda, “Infrared Spectroscopy in the Investigation of Oxide Glasses Structure,” Journal of Molecular Structure, Vol. 511-512, 1999, pp. 77-84. HUdoi:10.1016/S0022-2860(99)00146-5U
[9] N. A. Ghoneun, E. I. Batul, H. A. Abdel Shafi and M. H. Azooz, “Synthesis and Characterization of Cadmium Doped Lead-Borate Glasses,” Proceedings of Egyptian Conference of Chemistry, 1996, p. 162.
[10] A. A. Alemi, L. Kafi-Ahmadi, Sh. Karamipour, “Preparation and characterization of terbium oxide doped sodium tetraborate glasses,” Iranian Journal of Crystal and Minimum, Vol. 16, 2009, p. 1387.
[11] J. Krogh-Moe, “The Structure of Vitreous and Liquid Boron Oxide,” Journal of Non-Crystalline Solids, Vol. 1, No. 4, 1969, pp. 269-284. HUdoi:10.1016/0022-3093(69)90025-8U
[12] E. I. Kamitsos, “Infrared Studies of Borate Glasses,” Physics and Chemistry of Glasses, Vol. 44, No. 2, 2003, p. 79.
[13] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, G. D. Chryssikos, “Infrared Reflectance Spectra of Lithium Borate Glasses,” Journal of Non-Crystalline Solids, Vol. 126, No. 1-2, 1990, pp. 52-67. HUdoi:10.1016/0022-3093(90)91023-KU
[14] I. Waclawska, “Glass Transition Effect of Amorphous Borates,” Thermochimica Acta, Vol. 269-270, 1995, pp. 457464. HUdoi:10.1016/0040-6031(95)02566-9U
[15] E. I. Kamitsos, M. A. Karakassides, G. D. Cryssikos, “Vibrational Spectra of Magnesium-Sodium-Borate Glasses. 2. Raman and Mid-Infrared Investigation of the Network Structure,” The Journal of Physical Chemistry, Vol. 91, No. 5, 1987, pp. 1073-1079. HUdoi:10.1021/j100289a014U
[16] S. G. Motke, S. P. Yawale and S. S. Yawale, “Infrared Spectra of Zinc Doped Lead Borate Glasses,” Bulletin of Materials Science, Vol. 25, No. 1, 2002, pp. 75-78. HUdoi:10.1007/BF02704599U
[17] E. I. Kamitos, A. P. Patris, M. A. Karakassides and J. D. Chryssikos, “Infrared Reflectance Spectra of Lithium Borate Glasses,” Journal of Non-Crystalline Solids, Vol. 126, No. 1-2, 1990, pp. 52-67. HUdoi:10.1016/0022-3093(90)91023-KU
[18] I. Ardelean and M. Toderas, “FTIR Structural Investigation of 3 B2O3?BaO Glass Matrix Containing Manganese ions,” Advanced Materials for Optics and Electronics, Vol. 8, No. 3, 2006, p. 1118.
[19] H. Scholze, “Gases and Water in Glass,” Indiana Glass, Vol. 47, No. 11, 1966, p. 622.
[20] F. M. Ernsbjer, “Der Einbau Des Wassers in Gl?ssern,” Glastech Ber Glass Science Technology, Vol. 32, No. 3, 1959, p. 81.
[21] D. T. Pierce and W. E. Spicer, “Electronic Structure of Amorphous Si from Photoemission and Optical Studies,” Physical Review B, Vol. 5, No. 8, 1972, pp. 3017-3029. HUdoi:10.1103/PhysRevB.5.3017U
[22] M. Altaf, M. A. Chaudhry and M. Zahid, “Study of Optical Band Gap of Zinc-Borate Glasses,” Journal of Research (Science), Vol. 14, No. 2, 2003, pp. 253-259.
[23] R. P. S. Chakradhar, K. P. Ramesh, J. L. Rao and J. Ramakrishna, “Mixed Alkali Effect in Borate Glasses— EPR and Optical Absorption Studies in xNa2O-(30?x)K2O-70B2O3 Glasses Doped with Mn2+,” Journal of Physics and Chemistry of Solids, Vol. 64, No. 4, 2003, pp. 641-650. HUdoi:10.1016/S0022-3697(02)00365-7U
[24] K. Subrahmanyam and M. Salagram, “Optical Band Gap Studies on (55?x)Na2O-xPbO-45P2O5 (SLP) Glass System,” Optical Materials, Vol. 15, No. 3, 2000, pp. 181186. HUdoi:10.1016/S0925-3467(00)00033-1U
[25] H. E. Donya, H. M. El-Samman, A. El-Adawy, A. Hussein, A. R. El-Sersy and N. E. Khaled, “Optical Studies of Oxyfluoroborate Glasses,” Proceedings of Tenth Radiation Physics & Protection Conference, 2010, p. 135.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.