E-Beam Graft Polymerization of Hydrophilic PEG-Methacrylate on the Surface of PMMA

Abstract

The graft polymerization of hydrophilic monomers on the surface of hydrophobic PMMA was performed using an electron beam (e-beam). The dose of e-beam irradiation, reaction concentration, temperature, and reaction time were used to study the effect of variables on the graft density of poly (ethylene glycol)-methacrylate. The results demonstrated that the weight percentage of graft polymer increased with increasing temperature, time and monomer concentration. However, the weight of the graft polymer did not increase with the increasing dose of e-beam irradiation. The change of the contact angle of the water droplet on the PMMA surface was monitored as a function of a reaction time. The results showed that the contact angle decreased up until a specific time and then leveled off to an approximately constant value after a certain reaction time of the graft polymerization. Transmission electron microscopy proved that the constant value of the contact angle was due to the local survival of surface radicals followed by the perpendicular diffusion of monomers only into the bulk of the surface-modified area on the sheet surface.

Share and Cite:

Kim, S. and Huh, P. (2012) E-Beam Graft Polymerization of Hydrophilic PEG-Methacrylate on the Surface of PMMA. Journal of Surface Engineered Materials and Advanced Technology, 2, 264-270. doi: 10.4236/jsemat.2012.24040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Tang, F. Kligman, C. C. Larsen, K. Kottke-Marchant and R. E. Marchant, “Platelet and Endothelial Adhesion on Fluorosurfactant Polymers Designed for Vascular Graft Modification,” Journal of Biomedical Materials Research Part A, Vol. 88A, No. 2, 2009, pp. 348-358. doi:10.1002/jbm.a.31888
[2] Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu and B.-K.Zhu, “Modification of Polytetrafluoroethylene Porous Membranes by Electron Beam Initiated Surface Grafting of Binary Mo- nomers,” Journal of Membrane Science, Vol. 339, No. 1-2, 2009, pp. 33-38. doi:10.1016/j.memsci.2009.04.025
[3] C. C. Larsena, F. Kligman, K. Kottke-Marchant and R. E. Marchant, “The Effect of RGD Fluorosurfactant Polymer Modification of ePTFE on Endothelial Cell Adhesion, Growth, and Function,” Biomaterials, Vol. 27, No. 28, 2006, pp. 4846-4855. doi:10.1016/j.biomaterials.2006.05.009
[4] G. Bai, X. Hu, and Q. Yan, “Surface Modification of Polyethylene Film by Liquid Phase Photograft Polymerization,” Polymer Bulletin, Vol. 36, No. 4, 1996, pp. 503- 510. doi:10.1007/BF00315070
[5] L. Jiang, Y. Zhao and J. Zhai, “A Lotus-Leaf-Like Superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics,” Angewandte Chemie International Edition, Vol. 43, No. 33, 2004, pp. 4338-4341. doi:10.1002/anie.200460333
[6] N. Zhao, L. H. Weng, X. Y. Zhang, Q. D. Xie, X. L. Zhang and J. Xu, “A Lotus-Leaf-Like Superhydrophobic Surface Preparedby Solvent-Induced Crystallization,” ChemPhysChem, Vol. 7, No. 4, 2006, pp. 824-827. doi:10.1002/cphc.200500698
[7] U. Hersel, C. Dahmen and H. Kessler, “RGD Modified Polymers: Biomaterials for Stimulated Cell Adhesion and Beyond,” Biomaterials, Vol. 24, No. 24, 2003, pp. 4385- 4415. doi:10.1016/S0142-9612(03)00343-0
[8] Y. Q. Wan, J. Yang, J. L. Yang, J. Z. Bei and S. G. Wang, “Cell Adhesion on Gase-ous Plasma Modified Poly-(L- Lactide) Surface under Shear Stress Field,” Biomaterials, Vol. 24, No. 21, 2003, pp. 3757-3764. doi:10.1016/S0142-9612(03)00251-5
[9] L. S. Penn and H. Wang, “Chemical Modification of Polymer Surfaces: A Review,” Polymers for Advanced Technologies,” Polymers for Advanced Technologies, Vol. 5, No. 12, 1994, pp. 809-817. doi:10.1002/pat.1994.220051207
[10] K. Fujimoto, Y. Takebayashi, H. Inoue and Y. Ikada, “Ozone-Induced Graft Polymerization onto Polymer Surface,” Journal of Polymer Science Part A: Polymer Che- mistry, Vol. 31, No. 4, 1993, 1035-1043. doi:10.1002/pola.1993.080310426
[11] C.-Y. Tu, Y.-L. Liu, K.-R. Lee and J.-Y. Lai, “Surface Grafting Polymerization and Modification on Poly (Tetrafluoroethylene) Films by Means of Ozone Treatment,” Polymer, Vol. 46, No. 18, 2005, pp. 6976-6985. doi:10.1016/j.polymer.2005.05.116
[12] S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li and N. L. Allbritton, “Surface-Directed, Graft Polymerization within Microfluidic Channels,” Analytical Chemistry, Vol. 76, No. 7, 2004, pp. 1865-1870. doi:10.1021/ac049937z
[13] M. J. Kelley and Z. Zhu, “Process for Modifying Polymeric Surfaces Using Deep UV Irradiations,” US Patent 7585550 B2, 2009.
[14] C. Oehr, “Plasma Surface Modification of Polymers for Biomedical Use,” Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, Vol. 208, No. 1-4, 2003, pp. 40-47. doi:10.1016/S0168-583X(03)00650-5
[15] D. S. Ballantine, A. Glines, D. J. Metz, J. Beher, R. B. Mesrobian and A. J. Restaino, “G Values of Gamma-Ray Initiation of Vinyl Polymerization and Their Relation to Graft Copolymer Formation,” Journal of Polymer Science, Vol. 19, No. 91, 1956, pp. 219-224. doi:10.1002/pol.1956.120199128
[16] J. Chen, Y.-C. Nho and J.-S. Park, “Grafting Polymerization of Acrylic Acid onto Preirradiated Polypropylene Fabric,” Radiation Physics and Chemistry, Vol. 52, No. 1-6, 1998, pp. 201-206.
[17] M. Ko-matsu, T. Kawakami, J. Kanno and T. Sasaki, “Atom Transfer Radical Polymerization of Graft Chains onto Polyethylene Film Initiated at Tribromomethyl Unit Introduced by Electron Beam Irradiation,” Journal of Applied Polymer Science, Vol. 119, No. 5, 2011, pp. 2533- 2538. doi:10.1002/app.33071
[18] M. M. Nasef, H. Saidi and K. Z. M. Dahlan, “Kinetic Investigations of Graft Copolymerization of Sodium Styrene Sulfonate onto Electron Beam Irradiated Poly (Vinylidene Fluoride) Films,” Radiation Physics and Chemistry, Vol. 80, No. 1, 2011, pp. 66-75. doi:10.1016/j.radphyschem.2010.08.010
[19] Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu and B.-K. Zhu, “Modification of Polytetrafluoroethylene Porous Membranes by Electron Beam Initiated Surface Grafting of Binary Mo- nomers,” Journal of Membrane Science, Vol. 339, No. 1- 2, 2009, pp. 33-38. doi:10.1016/j.memsci.2009.04.025
[20] R. S. Benson, “Use of Radiation in Biomaterials Science,” Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms, Vol. 191, No. 1-4, 2002, pp. 752-757. doi:10.1016/S0168-583X(02)00647-X
[21] M. S. Matheson, E. E. Auer, E. B. Bevilacqua and E. J. Hart, “Rate Constants in Free Radical Polymerization. III. Styrene,” Journal of the American Chemical Society, Vol. 73, No. 4, 1951, pp. 1700-1706. doi:10.1021/ja01148a082
[22] I. Sideridou, V. Tserki and G. Papanastasiou, “Effect of Chemical Structure on Degree of Conversion in Light-Cured Dimethacrylate-Based Dental Resins,” Biomaterials, Vol. 23, No. 8, 2002, pp. 1819-1829. doi:10.1016/S0142-9612(01)00308-8
[23] R. A. Palmer and R. M. Dittmar, “Step-Scan FT-IR Photothermal Spectral Depth Profiling of Polymer Films,” Thin Solid Films, Vol. 223, No. 1, 1993, pp. 31-38. doi:10.1016/0040-6090(93)90724-4
[24] L. P. Krul, E. A. Murashko, L. B. Yakimtsova, O. I. Yankovich, I. A. Oleinikova, E. K. Fomina, E. V. Grinyuk and A. P. Polikarpov, “Radiation Polymerization of 2- Acrylamido-2-Methylpropanesulfonic Acid in Aqueous Solutions,” Radiation Chemistry, Vol. 43, No. 4, 2009, pp. 274-277.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.