Share This Article:

A First Principles Investigation of the Mechanical Properties of g-TlN

Full-Text HTML Download Download as PDF (Size:924KB) PP. 76-84
DOI: 10.4236/mnsms.2012.24009    3,563 Downloads   9,245 Views   Citations

ABSTRACT

We investigate the structure and mechanical properties of proposed graphene-like hexagonal thallium nitride monolayer (g-TlN) using first-principles calculations based on density-functional theory. Compared to graphene-like hexagonal boron nitride monolayer (g-BN), g-TlN is much softer, with 12% in-plane stiffness, 25%, 22%, and 20% ultimate strengths in armchair, zigzag, and biaxial strains respectively. However, g-TlN has a larger Poisson’s ratio, 0.69, about 3.1 times that of g-BN. It was found that the g-TlN also sustains much smaller strains before rupture. We obtained the second, third, fourth, and fifth order elastic constants for a rigorous continuum description of the elastic response of g-TlN. The second order elastic constants, including in-plane stiffness, are predicted to monotonically increase with pressure while the Poisson’s ratio monotonically decreases with increasing pressure.

Cite this paper

Q. Peng, C. Liang, W. Ji and S. De, "A First Principles Investigation of the Mechanical Properties of g-TlN," Modeling and Numerical Simulation of Material Science, Vol. 2 No. 4, 2012, pp. 76-84. doi: 10.4236/mnsms.2012.24009.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science Magazine, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences, USA, Vol. 102, No. 30, 2005, pp. 10451-10453. doi:10.1073/pnas.0502848102
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-Dimensional Gas of Massless Dirac Fermions in Graphene,” Nature, Vol. 438, No. 7065, 2005, pp. 197-200. doi:10.1038/nature04233
[4] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and P. Avouris, “Operation of Graphene Transistors at Gigahertz Frequencies,” Nano Letters, Vol. 9, No. 1, 2009, pp. 422-426. doi:10.1021/nl803316h
[5] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill and P. Avouris, “100-Ghz Transistors from Wafer-Scale Epitaxial Graphene,” Science Magazine, Vol. 327, No. 5966, 2010, p. 662. doi:10.1126/science.1184289
[6] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang and X. Duan, “High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate,” Nature, Vol. 467, No. 7313, 2010, pp. 305-308. doi:10.1038/nature09405
[7] Y. Ma, Y. Dai, M. Guo and B. Huang, “Graphene-Diamond Interface: Gap Opening and Electronic Spin Injection,” Physics Review B, Vol. 85, No. 23, 2012, pp. 235448-223452. doi:10.1103/PhysRevB.85.235448
[8] G. Brumfiel, “Graphene Gets Ready for the Big Time,” Nature, Vol. 458, No. 7237, 2009, pp. 390-391. doi:10.1038/458390a
[9] R. Mas-Balleste, C. Gomez-Herrero, J. Gómez-Herrero and F. Zamora, “2D Materials: To Graphene and Beyond,” Nanoscale, Vol. 3, No. 1, 2011, pp. 20-30.
[10] T. P. Kaloni, Y. C. Cheng and U. Schwingenschloegl, “Electronic Structure of Superlattices of Graphene and Hexagonal Boron Nitride,” Journal of Material Chemistry, Vol. 22, No. 3, 2012, pp. 919-922. doi:10.1039/c1jm14895h
[11] J. N. Coleman, M. Lotya, A. O’neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. Mccomb, P. D. Nellist and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science Magazine, Vol. 331, No
[12] A. Nag, K. Raidongia, K. P. Hembram, R. Datta, U. V. Waghmare and C. N. Rao, “Graphene Analogues of Bn: Novel Synthesis and Properties,” ACS Nano, Vol. 4, No. 3, 2010, pp. 1539-1544. doi:10.1021/nn9018762
[13] C. Li, Y. Bando, C. Zhi, Y. Huang and D. Golberg, “Thickness-Dependent Bending Modulus of Hexagonal Boron Nitride Nanosheets,” Nanotechnology, Vol. 20, No. 38, 2009, pp. 385707-385712. doi:10.1088/0957-4484/20/38/385707
[14] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson and P. M. Ajayan, “Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers,” Nano Letters, Vol. 10, No. 8, 2010, pp. 3209-3215. doi:10.1021/nl1022139
[15] M. Topsakal, E. Aktürk and S. Ciraci, “First-Principles Study of Twoand One-Dimensional Honeycomb Structures of Boron Nitride,” Physics Review B, Vol. 79, No. 11, 2009, pp. 115442-115452. doi:10.1103/PhysRevB.79.115442
[16] K. Watanabe, T. Taniguchi and H. Kanda, “Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal,” Nature Material, Vol. 3, No. 6, 2004, pp. 404-409. doi:10.1038/nmat1134
[17] C. Zhi, Y. Bando, C. Tang, H. Kuwahara and D. Golberg, “Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties,” Advanced Material, Vol. 21, No. 28-32, 2009, pp. 2889-2893.
[18] G. Y. Guo and J. C. Lin, “Systematic ab Initio Study of the Optical Properties of Bn Nanotubes,” Physics Review B, Vol. 71, No. 16, 2005, pp. 165402-165413. doi:10.1103/PhysRevB.71.165402
[19] W. Han, W. Mickelson, J. Cumings and A. Zettl, “Transformation of Bxcynz Nanotubes to Pure Bn Nanotubes,” Applied Physics Letters, Vol. 81, No. 6, 2002, pp. 11101112. doi:10.1063/1.1498494
[20] K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard and F. Willaime, “Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers of Boron Nitride and Carbon,” Science Magazine, Vol. 278, No. 5338, 1997, pp. 653-655. doi:10.1126/science.278.5338.653
[21] A. P. Suryavanshi, M. F. Yu, J. G. Wen, C. C. Tang and Y. Bando, “Elastic Modulus and Resonance Behavior of Boron Nitride Nanotubes,” Applied Physics Letters, Vol. 84, No. 14, 2004, pp. 2527-2529. doi:10.1063/1.1691189
[22] X. Blase, A. Rubio, S. G. Louie and M. L. Cohen, “Stability and Band-Gap Constancy of Boron-Nitride Nanotubes,” Europhyics Letter, Vol. 28, No. 5, 1994, pp. 335341. doi:10.1209/0295-5075/28/5/007
[23] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, “Boron Nitride Nanotubes and Nanosheets,” ACS Nano, Vol. 4, No. 6, 2010, pp. 29792993. doi:10.1021/nn1006495
[24] L. Liu, Y. P. Feng and Z. X. Shen, “Structural and Electronic Properties of H-Bn,” Physics Review B, Vol. 68, No. 10, 2003, pp. 104102-104109. doi:10.1103/PhysRevB.68.104102
[25] K. N. Kudin, G. E. Scuseria and B. I. Yakobson, “C2f, Bn and C Nanoshell Elasticity from ab Initio Computations,” Physics Review B, Vol. 64, No. 23, 2001, pp. 235406235415. doi:10.1103/PhysRevB.64.235406
[26] A. Zhang, H. F. Teoh, Z. Dai, Y. P. Feng and C. Zhang, “Band Gap Engineering in Graphene and Hexagonal Bn Antidot Lattices: A First Principles Study,” Applied Physics Letters, Vol. 98, No. 2, 2011, pp. 023105-023107. doi:10.1063/1.3536517
[27] T. Kawasaki, T. Ichimura, H. Kishimoto, A. A. Akbar, T. Ogawa and C. Oshima, “Double Atomic Layers of Graphene/Monolayer H-Bn on Ni(111) Studied by Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy,” Surface Review and Letters, Vol. 9, No. 3-4, 2002, pp. 1459-1464. doi:10.1142/S0218625X02003883
[28] J. Slawinska, I. Zasada, P. Kosinski and Z. Klusek, “Reversible Modifications of Linear Dispersion: Graphene between Boron Nitride Monolayers,” Physics Review B, Vol. 82, No. 8, 2010, pp. 085431-085435. doi:10.1103/PhysRevB.82.085431
[29] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly and J. Van Den Brink, “Substrate Induced Band Gap in Graphene on Hexagonal Boron Nitride: Ab Initio Density Functional Calculations,” Physics Review B, Vol. 76, No. 7, 2007, pp. 073103-073106. doi:10.1103/PhysRevB.76.073103
[30] S. Bhowrnick, A. K. Singh and B. I. Yakobson, “Quantum Dots and Nanoroads of Graphene Embedded in Hexagonal Boron Nitride,” The Journal of Physical Chemistry C, Vol. 115, No. 20, 2011, pp. 9889-9893. doi:10.1021/jp200671p
[31] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu and P. M. Ajayan, “Atomic Layers of Hybridized Boron Nitride and Graphene Domains,” Nature Material, Vol. 9, No. 5, 2010, pp. 430-435. doi:10.1038/nmat2711
[32] Q. Peng and S. De, “Tunable Band Gaps of Mono-Layer Hexagonal BNC Heterostructures,” Physical E, Vol. 44, No. 7-8, 2012, pp. 1662-1666. doi:10.1016/j.physe.2012.04.011
[33] Q. Peng, A. R. Zamiri, W. Ji and S. De, “Elastic Properties of Hybrid Graphene/Boron Nitride Monolayer,” Acta Mechanica, in press, 2012. doi:10.1007/s00707-012-0714-0
[34] J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun and P. Jena, “Electronic Structures and Bonding of Graphyne Sheet and Its Bn Analog,” Journal of Chemical Physics, Vol. 134, No. 17, 2011, pp. 174701-174706. doi:10.1063/1.3583476
[35] A. Schleife, F. Fuchs, C. Roedl, J. Furthmueller and F. Bechstedt, “Branch-Point Energies and Band Discontinuities of Iii-Nitrides and Iii-/Ii-Oxides from Quasiparticle Band-Structure Calculations,” Applied Physics Letter, Vol. 94, No. 1, 2009, pp. 012104-012106. doi:10.1063/1.3059569
[36] F. Bernardini, V. Fiorentini and D. Vanderbilt, “Spontaneous Polarization and Piezoelectric Constants of Iii-V Nitrides,” Physics Review B, Vol. 56, No. 16, 1997, pp. R10024-R10027. doi:10.1103/PhysRevB.56.R10024
[37] O. Ambacher, “Growth and Applications of Group Iii Nitrides,” Journal of Physics D, Vol. 31, No. 20, 1998, pp. 2653-2710. doi:10.1088/0022-3727/31/20/001
[38] M. Ferhat and A. Zaoui, “Do All Iii-V Compounds Have the Zinc-Blende or Wurtzite Ground State Structure,” Applied Physics Letter, Vol. 88, No. 16, 2006, pp. 161902161904. doi:10.1063/1.2196050
[39] Y. Wang and S. Shi, “Structural and Electronic Properties of Monolayer Hydrogenated Honeycomb Iii-V Sheets from First-Principles,” Solid State Communications, Vol. 150, No. 31, 2010, pp. 1473-1478. doi:10.1016/j.ssc.2010.05.031
[40] N. S. Dantas, J. S. De Almeida, R. Ahuja, C. Persson and A. F. Da Silva, “Novel Semiconducting Materials for Optoelectronic Applications: Al1-Xtlxn Alloys,” Applied Physics Letter, Vol. 92, No. 12, 2008, pp. 121914-121916. doi:10.1063/1.2901146
[41] H. M. A. Mazouz, A. Belabbes, A. Zaoui and M. Ferhat, “First-Principles Study of Lattice Dynamics in ThalliumV Compounds,” Superlattices Microstructures, Vol. 48, No. 6, 2010, pp. 560-568. doi:10.1016/j.spmi.2010.09.012
[42] M. Vanschilfgaarde, A. Sher and A. B. Chen, “Intlsb—An Infrared Detector Material,” Applied Physics Letter, Vol. 62, No. 16, 1993, pp. 1857-1859. doi:10.1063/1.109523
[43] M. Vanschilfgaarde, A. B. Chen, S. Krishnamurthy and A. Sher, “Intip—A Proposed Infrared Detector Material,” Applied Physics Letter, Vol. 65, No. 21, 1994, pp. 27142716. doi:10.1063/1.112567
[44] K. Yamamoto, H. Asahi, M. Fushida, K. Iwata and S. Gonda, “Gas Source Molecular Beam Epitaxy Growth of Tlinp for New Infrared Optical Devices,” Journal of Applied Physics, Vol. 81, No. 4, 1997, pp. 1704-1707. doi:10.1063/1.364013
[45] R. Beneyton, G. Grenet, P. Regreny, M. Gendry, G. Hollinger, B. Canut and C. Priester, “Experimental and Theoretical Investigation into the Difficulties of Thallium Incorporation into Iii-V Semiconductors,” Physics Review B, Vol. 72, No. 12, 2005, pp. 125209. doi:10.1103/PhysRevB.72.125209
[46] L. Shi, Y. Duan, X. Yang, G. Tang, L. Qin and L. Qiu, “Structural, Electronic and Elastic Properties of WurtziteStructured Tlxal1-Xn Alloys from First Principles,” Materials Science in Semiconductor Processing, Vol. 15, No. 5, 2012, pp. 499-504. doi:10.1016/j.mssp.2012.03.013
[47] N. Saidi-Houat, A. Zaoui, A. Belabbes and M. Ferhat, “Ab Initio Study of the Fundamental Properties of Novel Iii-V Nitride Alloys Ga1-Xtlxn,” Materials Science and Engineering: B, Vol. 162, No. 1, 2009, pp. 26-31. doi:10.1016/j.mseb.2009.01.031
[48] N. Saidi-Houat, A. Zaoui and M. Ferhat, “Structural Stability of Thallium-V Compounds,” Journal of Physics: Condensed Matter, Vol. 19, No. 10, 2007, pp. 106221106239. doi:10.1088/0953-8984/19/10/106221
[49] L. Shi, Y. Duan and L. Qin, “Structural Phase Transition, Electronic and Elastic Properties in Tlx (X = N, P, as) Compounds: Pressure-Induced Effects,” Computational Materials Science, Vol. 50, No. 1, 2010, pp. 203-210. doi:10.1016/j.commatsci.2010.07.027
[50] S. Li-Wei, D. Yi-Feng, Y. Xian-Qing and T. Gang, “Phonon and Elastic Instabilities in Zincblende Tln under Hydrostatic Pressure from First Principles Calculations,” Chinese Physics Letter, Vol. 28, No. 10, 2011, pp. 100503100507. doi:10.1088/0256-307X/28/10/100503
[51] E. Chigo Anota, M. Salazar Villanueva and H. Hernandez Cocoletzi, “Electronic Properties of Group Iii-a Nitride Sheets by Molecular Simulation,” Physica Status Solidi (c), Vol. 7, No. 7-8, 2010, pp. 2252-2254. doi:10.1002/pssc.200983499
[52] F. Guinea, M. I. Katsnelson and A. K. Geim, “Energy Gaps and a Zero-Field Quantum Hall Effect in Graphene by Strain Engineering,” Nature Physics, Vol. 6, No. 1, 2010, pp. 30-33. doi:10.1038/nphys1420
[53] Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu and B. Huang, “First-Principles Study of the Graphene@Mose2 Heterobilayers,” The Journal of Physical Chemistry C, Vol. 115, No. 41, 2011, pp. 20237-20241. doi:10.1021/jp205799y
[54] Z. H. Aitken and R. Huang, “Effects of Mismatch Strain and Substrate Surface Corrugation on Morphology of Supported Monolayer Graphene,” Journal of Applied Physics, Vol. 107, No. 12, 2010, pp. 123531-123540. doi:10.1063/1.3437642
[55] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science Magazine, Vol. 321, No. 5887, 2008, pp. 385-388. doi:10.1126/science.1157996
[56] X. Wei, B. Fragneaud, C. A. Marianetti and J. W. Kysar, “Nonlinear Elastic Behavior of Graphene: Ab Initio Calculations to Continuum Description,” Physics Review B, Vol. 80, No. 20, 2009, pp. 205407-205414. doi:10.1103/PhysRevB.80.205407
[57] Q. Peng, W. Ji and S. De, “Domain Size Effect on Mechanical Properties of the Hybrid Graphene/Boron Nitride Monolayer,” under review.
[58] Q. Peng, W. Ji and S. De, “Mechanical Properties of the Hexagonal Boron Nitride Monolayer: Ab Initio Study,” Computational Materials Science, Vol. 10, No. 8, 2012, pp. 11-17. doi:10.1016/j.commatsci.2011.12.029
[59] Q. Peng, W. Ji and S. De, “Mechanical Properties of Graphyne Monolayer: A First-Principles Study,” Physical Chemistry Chemical Physics, Vol. 14, 2012, pp. 1338513391. doi:10.1039/c2cp42387a
[60] C. A. Marianetti and H. G. Yevick, “Failure Mechanisms of Graphene under Tension,” Physics Review Letter, Vol. 105, No. 24, 2010, pp. 245502-245505. doi:10.1103/PhysRevLett.105.245502
[61] G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Physics Review B, Vol. 47, No. 1, 1993, pp. 558-561. doi:10.1103/PhysRevB.47.558
[62] G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semicon Ductor Transition in Germanium,” Physics Review B, Vol. 49, No. 20, 1994, pp. 14251-14269. doi:10.1103/PhysRevB.49.14251
[63] G. Kresse and J. Furthuller, “Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set,” Computational Materials Science, Vol. 6, No. 1, 1996, pp. 15-50. doi:10.1016/0927-0256(96)00008-0
[64] G. Kresse and J. Furthuller, “Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a PlaneWave Basis Set,” Physics Review B, Vol. 54, No. 16, 1996, pp. 11169-11186. doi:10.1103/PhysRevB.54.11169
[65] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review B, Vol. 136, No. 3B, 1964, pp. B864-B871. doi:10.1103/PhysRev.136.B864
[66] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physics Review, Vol. 140, No. 4A, 1965, pp. A1133-A1138. doi:10.1103/PhysRev.140.A1133
[67] J. Perdew, K. Burke and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physics Review Letter, Vol. 77, No. 18, 1996, pp. 3865-3868. doi:10.1103/PhysRevLett.77.3865
[68] P. E. Blochl, “Projector Augmented-Wave Method,” Physics Review B, Vol. 50, No. 24, 1994, pp. 17953-17979. doi:10.1103/PhysRevB.50.17953
[69] R. O. Jones and O. Gunnarsson, “The Density Functional Formalism, Its Applications and Prospects,” Reviews of Modern Physics, Vol. 61, No. 3, 1989, pp. 689-746. doi:10.1103/RevModPhys.61.689
[70] M. Topsakal, S. Cahangirov and S. Ciraci, “The Response of Mechanical and Electronic Properties of Graphane to the Elastic Strain,” Applied Physics Letter, Vol. 96, No. 9, 2010, pp. 091912-091914. doi:10.1063/1.3353968
[71] Q. Peng, C. Liang, W. Ji and S. De, “Change of Nonlinear Mechanical Properties by Hydrogenation: Graphane vs Graphene,” under review.
[72] J. F. Nye, “Physical Properties of Crystals,” Oxford Science Publications, Oxford, 1995.
[73] S. Y. Davydov, “Third Order Elastic Moduli of Single Layer Graphene,” Physics of the Solid State, Vol. 53, No. 3, 2011, pp. 665-668. doi:10.1134/S1063783411030073

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.