Opal-Based Photonic Crystal Heterostructures

Abstract

The fabrication of photonic crystal heterostructures is important for the applications in the fields of integrated photonic crystal chips and multi-frequency optical Bragg filters or mirrors; here we report on the fabrication and characterization of opal-based photonic crystal heterostructures. These heterostructures are created by using multilayer deposition of silica and polystyrene spheres. In the specific the fabricated structures involved both different lattice constant and dielectric function. Scanning electron microscopy (SEM) and VIS-NIR transmittance and reflectance spectroscopy are used to characterize the systems. The SEM images show good ordering of the two-layer colloidal crystals constituting the heterostructures. The transmittance and reflectance spectra measured from the (111) plane of the heterostructure show that the composite colloidal photonic crystals have double photonic stop bands that matches the stop bands of the individual photonic crystals. This behaviour can be seen as a superposition of the properties of each individual layer.

Share and Cite:

A. Chiappini, C. Armellini, N. Bazzanella, G. Righini and M. Ferrari, "Opal-Based Photonic Crystal Heterostructures," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 206-210. doi: 10.4236/opj.2012.223031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Yablonovitch and T.J. Gmitter “Photonic band structure: The face-centered-cubic case” Physical Review Letters, Vol. 63, No. 18, 1989, pp. 1950-1953. doi:10.1103/PhysRevLett.63.1950
[2] S. John “Strong localization of photons in certain disordered dielectric superlattices” Physical Review Letters, Vol. 58, No. 23, 1987, pp. 2486-2489. doi:10.1103/PhysRevLett.58.2486
[3] Y. Li, L.M. Fortes, A. Chiappini, M. Ferrari, and R.M. Almeida “High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing” Journal of Physics D - Applied Physics, Vol. 42, No. 20, 2009, pp. 205104- 1-205104-7. doi:10.1088/0022-3727/42/20/205104
[4] T.F. Krauss, R.M. De La Rue, and S. Brand “Two-dimen- sional photonic-bandgap structures operating at near-infrared wavelengths” Nature, Vol. 383, No. 24, 1996, pp. 699-702. doi:10.1038/383699a0
[5] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J.P. Mondla, G.A. Ozin, O. Toader, and H.M. Van Driel “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres” Nature, Vol. 405, No. 25, 2000, pp. 437-440. doi:10.1038/35013024
[6] V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, “Colloidal Photonic Crystals Doped with Gold Nanoparticles: Spectroscopy and Optical Switching Properties” AdvancedFunctional Materials Vol. 17, No. 17, 2007, pp. 2779 – 2786. doi:10.1002/adfm.200600764
[7] H. Fudouzi, T.Sawada” Photonic Rubber Sheets with Tunable Color by Elastic Deformation” Langmuir, Vol. 22, No. 3, 2006, pp. 1365-1368. doi:10.1021/la0521037
[8] D. Zonta, A. Chiappini, A. Chiasera, M. Ferrari, M. Pozzi, L. Battisti, and M. Benedetti “Photonic crystals for monitoring fatigue phenomena in steel structures” Proceedings. of SPIE, Vol. 7292, 2009, pp. 729215-729215- 10. doi:10.1117/12.814915
[9] Z. Z. Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, and O. Sato “Fabrication of a metal-coated three-dimen- sionally ordered macroporous film and its application as a refractive index sensor” Angewandte Chemie-Interna- tional Edition, Vol. 41, No 7, 2002, pp. 1154-1156. doi:10.1002/1521-3773(20020402)
[10] L. Lu, I. Randjelovic, R. Capek, N. Gaponik, J. Yang, H. Zhang, and A. Eychmüller, “Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy” Chemistry of Materials, Vol. 17, No 23, 2005, pp. 5731-5736. doi:10.1021/cm051473d
[11] A. Chiappini, S. Guddala, C. Armellini, S. Berneschi, I. Cacciari, C. Duverger-Arfuso, M. Ferrari, and G.C. Righini “Fabrication and characterization of colloidal crystals infiltrated with metallic nanoparticles” Proceedings of SPIE, Vol. 7598, 2010, pp. 77250W-1/8.
[12] M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R.P.H. Chang “Ultraviolet lasing in high-order bands of three- dimensional ZnO photonic crystals” Applied Physics Letters, Vol. 88, No 20, 2006, pp. 201103-1-201103-3. doi:10.1063/1.2203939
[13] A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mattarelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, Clara M. Gon?alves, and Rui M. Almeida, "Design of photonic structures by sol–gel- derived silica nanospheres" Journal of Non-Crystalline Solids, Vol. 353, No. 5-7, 2007, pp. 674–678. doi:10.1016/j.jnoncrysol.2006.10.034
[14] A.C. Arsenault, D.P. Puzzo, I. Manners, and G.A. Ozin “Photonic-crystal full-colour displays” Nature Photonics, Vol. 1, No. pp. 468-472 (2007).
[15] F. Li, D. P. Josephson, and A. Stein “Colloidal assembly: The road from particles to colloidal molecules and crystals” Angewandte Chemie- International Edition, Vol. 50, No 2, 2011 pp. 360-388. doi:10.1002/anie.201001451
[16] [16] H. Fudouzi “Novel coating method for artificial opal films and its process analysis” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 311, No. 1, 2007, pp. 11-15. doi:10.1016/j.colsurfa.2007.08.034
[17] L.V. Woodcock “Entropy difference between the face- centred cubic and hexagonal close-packed crystal structures” Nature, Vol. 385, 1997, pp. 141-143. doi:10.1038/385141a0
[18] H. Míguez, C. López, F. Meseguer, A. Blanco, L. Váz- quez, R. Mayoral, M. Oca?a, V. Fornés, and A. Mifsud “Photonic crystal properties of packed submicrometric SiO2 spheres” Applied Physics Letters, Vol. 71, No. 9, 1997, pp. 1148-1150. doi:10.1063/1.119849
[19] P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin “The Fabrication and Bandgap Engineering of Photonic Multilayers” Advanced. Materials., Vol. 13, No. 6, 2001, pp. 389-393. doi:10.1002/1521-4095(200103)
[20] W. Khunsin, S.G. Romanov, C. M. Sotomayor Torres, J. Ye, and R. Zentel “Optical transmission in triple-film hetero-opals” Journal of Applied Physics, Vol. 104, No. 1, 2008, pp. 013527-1-013527-8. doi:10.1063/1.2951958
[21] B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov “Engineered Light Scattering in Colloidal Photonic Heterocrystals” Advanced Functional Materials, Vol. 20, No. 5, 2010, pp. 853–860. doi:10.1002/adfm.200901319
[22] N. Stefanou, V. Yannopapas, and A. Modinos “MUL- TEM 2: A new version of the program for transmission and band-structure calculations of photonic crystals” Computer Physics Communications, Vol. 132, No. 1-2, 2000, pp. 189-196. doi:10.1016/S0010-4655(00)00131-4
[23] Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y.-M. Chiang “Layer transfer approach to opaline hetero photo- nic crystals” Langmuir, Vol. 24, No. 5, 2008, pp. 1796- 1800. doi:10.1021/la702668p
[24] D. K. Hwang, H. Noh, H. Cao and R. P. H. Chang “Pho- tonic bandgap engineering with inverse opal multi- stacks of different refractive index contrasts” Applied Physics Letters, Vol. 95, No. 9, 2009, pp. 091101-1- 091101-3.
[25] M. Eegn, R. Voss, B. Griesebock; and R. Zentel “Heterostructures of Polymer Photonic Crystal Films” Chemistry of Materials, Vol. 15, No. 20, 2003, pp. 3786-3792. doi:10.1021/cm030087y
[26] R. V. Nair and R. Vijayaa “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band” Journal of Applied Physics, Vol. 102, No. 5, 2007, pp. 056102-1-056102-3. doi:10.1063/1.2777120
[27] F. Piret, Y.-U. Kwon, and B.-L. Su “Silica colloidal crystals with uni- and multi-photonic bandgaps and controlled reflective properties” Chemical Physics Letters, Vol. 472, No. 4-6, 2009, pp. 207-211. doi:10.1016/j.cplett.2009.03.014
[28] A.-J. Wang, S.L. Chen, P. Dong, X. G. Cai, Q. Zhou, G.M. Yuan, C. T. Hu, and D. Z. Zhng, “Fabrication of Colloidal Photonic Crystals with Heterostructure by Spin-Coating Method” Chinese Physics Letters, Vol. 26, No. 2, 2009, pp. 024210-1-024210-4. doi:10.1088/0256-307X/26/2/024210
[29] W. Stober, A. Fink, and E. Bohn “Controlled growth of monodisperse silica spheres in the micron size range” Journal of Colloid and Interface Science, Vol. 26, No. 1, 1968, pp. 62-69. doi:10.1016/0021-9797(68)90272-5
[30] B. T. Holland, C. F.Blanford, T. Do, and A. Stein “Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites” Chemistry of Materials, Vol. 11, No. 3, 1999, pp. 795-805. doi:10.1021/cm980666g
[31] A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, L. Fortes, M. Clara Gon?alves, R. Guider, Y. Jestin, R. Retoux, G. Nunzi Conti, S. Pelli, Rui M. Almeida, and G.C. Righini, “An alternative method to obtain direct opal photonic crystal structures", Journal of Non-Crystalline Solids, Vol. 355, 2009, pp. 1167–1170. doi:10.1016/j.jnoncrysol.2009.01.054
[32] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin “Single-crystal colloidal multilayers of controlled thickness” Chemistry of Materials, Vol. 11, No. 8, 1999, pp. 2132-2140. doi:10.1021/cm990080+
[33] G. Johnson, and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis” Optics Express, Vol. 8, No. 3, 2001, pp. 173-190. doi:10.1364/OE.8.000173
[34] A. Z. Khokhar, F. Rahman, and N. P.Johnson, “Photonic crystal heterostructures from self-assembled opals” Applied Physics A: Materials Science and Processing, Vol. 102, No. 2, 2011, pp. 281-287. doi:10.1007/s00339-010-6145-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.