Genetic Transformation Studies on Avocado Cultivar “Hass” (Persea americana)

Abstract

The use of traditional breeding for improvement of avocado cultivars is time consuming, hence other methods such as genetic transformation by Agrobacterium is indispensable to adopt. The strain GV3850/pBI121gave best transformation outcome compared to five other binary vectors (AGL1/pCGP904; AGL1/pBI121; GV3850/pCGP904; LBA4404/pCG-P904 and LBA4404/pBI121) under different pH and acetosyringone concentrations. The optimal condition for reliable transformation was by using 200 μM acetosyringone and a pH of 5.2. Transformed embryonic shoots co-cultivated with GV3850/pBI121 were tested using the histochemical x-gluc assay. Further analysis was conducted by polymerase chain reaction using specific primers for the reporter gene (GUS).

Share and Cite:

M. Ahmed, A. Kantharajah and P. Holford, "Genetic Transformation Studies on Avocado Cultivar “Hass” (Persea americana)," American Journal of Plant Sciences, Vol. 3 No. 9, 2012, pp. 1225-1231. doi: 10.4236/ajps.2012.39148.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. B. Horsch, J. Fry, N. Hoffmann, J. Neidermeyer, S. G. Rogers and R. T. Fraley, “Leaf Disc Transformation,” In: S. B. Gelvin, R. A. Schilperoort and D. P. Verma, Eds., Plant Molecular Biology Manual, Kluwer Academic Publisher, Belgium, 1988, pp. 1-9.
[2] H. Klee and S. Rogers, “Plant Gene Vectors and Genetic Transformation: Plant Transformation System Based on the Use of Agrobacterium tumefaciens,” In: J. Schell and I. K. Vasil, Eds., Cell Culture and Somatic Cell Genetics of Plants, Vol. 6: Molecular Biology of Plant Nuclear Genes, Academic Press, London, 1989, pp. 1-23.
[3] G. An, P. R. Ebert, A. Mitra and S. Ha, “Binary Vectors,” In: S. B. Gelvin, R. A. Schilperoort and D. P. Verma, Eds., Plant Molecular Biology Manual, Kluwer Academic Publisher, Belgium, 1988, pp. 1-19.
[4] P. Zambryski, H. Joos, C. Genetello, J. Leemans, M. Van Montagu and J. Schell, “Ti-Plasmid Vector for the Introduction of DNA into Plant Cells without Alteration of Their Normal Regeneration Capacity,” EMBO Journal, Vol. 12, No. 2, 1983, pp. 2143-2150.
[5] A. Hoekema, P. R. Hirsch, P. J. J. Hookaas, and R. A. Schilperoot, “A Binary Plant Vector Strategy Based on Separation of vir- and T-region of the Agrobacterium tumefaciens Ti Plasmid,” Nature, Vol. 303, 1983, pp. 179-180. doi:10.1038/303179a0
[6] G. Ooms, P. Hooykaas, G. Moolenaar, and R. Schilperoort, “Crown Gall Tumors of Abnormal Morphology Induced by Agrobacterium tumefaciens Carrying Mutated Octopine Ti Plasmids; Analysis of T-DNA Functions,” Gene, Vol. 14, No. 1-2, 1981, pp. 33-50. doi:10.1016/0378-1119(81)90146-3
[7] A. Cruz-Hernández, Witjaksono, R. E. Litz and M. Gomez Lim, “Agrobacterium tumefaciens—Mediated Transformation of Embryogenic Avocado Cultures and Regeneration of Somatic Embryos,” Plant Cell Reports, Vol. 17, No. 6-7, 1998, pp. 497-503. doi:10.1007/s002990050431
[8] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[9] R. A. Jefferson, T. A. Kavanagh, and M. W. Bevan, “GUS Fusions: β-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants,” EMBO Journal, Vol. 6, No. 13, 1987, pp. 3901-3907.
[10] K. H. Lipp Joao and T. A. Brown, “Enhanced Transformation of Tomato Co-Cultivated with Agrobacterium tumefaciens C58CIRif::pGSFR1161 in the Presence of Acetosyringone,” Plant Cell Reports, Vol. 12, No. 7-8, 1993, pp. 422-425. doi:10.1007/BF00234705
[11] R. Berres, L. Otten, B. Tinland, E. Clog and B. Walter, “Transformation of Vitis Tissue by Different Strains of Agrobacterium tumefaciens Containing the T-6b Gene,” Plant Cell Reports, Vol. 11, No. 4, 1992, pp. 192-195. doi:10.1007/BF00232531
[12] M. M. Lulsdorf, H. Rempel, J. A. Jackson, D. S. Baliski and S. L. A. Hobbs, “Optimizing the Production of Transformed Pea (Pisum sativum L.) Callus Using Disarmed Agrobacterium tumefaciens Strains,” Plant Cell Reports, Vol. 9, No. 9, 1991, pp. 479-483. doi:10.1007/BF00232100
[13] G. A. De la Riva, G. C. Joel, R. Vázquez-Padrón and C. Ayra-Pardo, “Agrobacterium tumefaciens: A Natural Tool for Plant Transformation,” Electronic Journal of Biotechnology, Vol. 1 No. 3, 1998. doi:10.2225/vol1-issue3-fulltext-1
[14] L. R. Bradley, J. S. Kim and A. G. Matthysse, “Attachment of Agrobacterium tumefaciens to Carrot Cells and Arabidopsis Wound Sites Is Correlated with the Presence of a Cell-Associated, Acidic Polysaccharide,” Journal of Bacteriology, Vol. 179, No. 17, 1997, pp. 5372-5379.
[15] G. F. L. Ames, C. S. Mimura and V. Shyamala, “Bacterial Periplasmic Permeases Belong to a Family of Transport Proteins Operating from Escherichia coli to Human: Traffic ATPases,” FEMs Microbiological Review, Vol. 75, No. 4, 1990, pp. 429-446. doi:10.1016/0378-1097(90)90691-I
[16] C. F. Higgings, S. C. Hyde, M. M. Mimmack, U. Gileadi, D. R. Gill and M. P. Gallagher, “Binding Protein-Dependent Transport Systems,” Journal of Bioenergy and Biomembranes, Vol. 22, 1990, pp. 571-592. doi:10.1007/BF00762962
[17] A. G. Matthysse, H. A. Yarnall and N. Young, “Requirement for Genes with Homology to ABC Transport System for Attachment and Virulence of Agrobacterium tumefaciens,” Journal of Bacteriology, Vol. 178, 1996, pp. 5302-5308.
[18] M. Bevan, “Binary Agrobacterium Vectors for Plant Transformation,” Nucleic Acids Research, Vol. 12, No. 22, 1984, pp. 8711-8721. doi:10.1093/nar/12.22.8711
[19] L. Comai, P. Moran and D. Maslyar, “Novel and Useful Properties of a Chimeric Plant Promoter Combining CaMV 35S and MAS Elements,” Plant Molecular Biology, Vol. 15, No. 3, 1990, pp. 373-381. doi:10.1007/BF00019155
[20] T. K. Orlikowska, H. J. Cranston and W. E. Dyer, “Factors Influencing Agrobacterium tumefaciens—Mediated Transformation and Regeneration of the Safflower Cultivar ‘Centennial’,” Plant Cell, Tissue and Organ Culture, Vol. 40, 1995, pp. 85-91. doi:10.1007/BF00041122
[21] I. Senior, P. Holford, R. N. Cooley and H. J. Newbury, “Transformation of Antirrhinum majus Using Agrobacterium rhizogenese,” Journal of Experimental Botany, Vol. 46, No. 9, 1995, pp. 1233-1239. doi:10.1093/jxb/46.9.1233

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.