Share This Article:

Comparison of the Colonization Ability of Autochthonous and Allochthonous Strains of Lactobacilli in the Human Gastrointestinal Tract

Full-Text HTML Download Download as PDF (Size:875KB) PP. 399-409
DOI: 10.4236/aim.2012.23051    5,024 Downloads   9,109 Views   Citations

ABSTRACT

Bacteria of the genus Lactobacillus are widely used as oral probiotics due to their putative health benefits. In this study, we compared the colonization ability of two Lactobacillus strains that were identified as autochthonous to the human gastrointestinal tract (Lactobacillus reuteri ATCC PTA 6475 (MM4-1a) and (Lactobacillus mucosae FSL-04) with that of an allochthonous strain (Lactobacillus acidophilus DDS-1). Colonization ability was tested in a single-blinded, cross-over study, with twelve human subjects. The test strains were quantified in fecal samples by two independent methods, selective plating and molecular typing and quantitative real time PCR. The study revealed that the two autochthonous strains (L. reuteri ATCC PTA 6475 and L. mucosae FSL-04) reached higher population levels in fecal samples and were recovered more frequently from subjects compared to the allochthonous strain (L. acidophilus DDS-1). All three strains became undetectable 8 days after the end of consumption with one exception, showing that persistence of all three strains remains short term in most individuals. In conclusion, this study showed that autochthonous Lactobacillus strains can be established more efficiently, albeit temporarily, in the human gastrointestinal tract, suggesting that evolutionary and ecological characteristics could be valuable criteria for the selection of probiotic strains.

Cite this paper

S. A. Frese, R. W. Hutkins and J. Walter, "Comparison of the Colonization Ability of Autochthonous and Allochthonous Strains of Lactobacilli in the Human Gastrointestinal Tract," Advances in Microbiology, Vol. 2 No. 3, 2012, pp. 399-409. doi: 10.4236/aim.2012.23051.

References

[1] A. C. Ouwehand, S. Salminen and E. Isolauri, “Probiotics: An Overview of Beneficial Effects,” Antonie Van Leeuwenhoek, Vol. 82, No. 1-4, 2002, pp. 279-289. doi:10.1023/A:1020620607611
[2] P. W. O’Toole and J. C. Cooney, “Probiotic Bacteria Influence the Composition and Function of the Intestinal Microbiota,” Interdisciplinary Perspectives on Infectious Diseases, Vol. 85, No. 1752, 2008, 9 Pages.
[3] C. Dunne, L. Murphy, S. Flynn, L. O’Mahony, S. O’Hal- loran, M. Feeney, D. Morrissey, G. Thornton, G. Fitzgerald, C. Daly, B. Kiely, E. M. Quigley, G. C. O’Sullivan, F. Shanahan and J. K. Collins, “Probiotics: From Myth to Reality Demonstration of Functionality in Animal Models of Disease and in Human Clinical Trials,” Antonie Van Leeuwenhoek, Vol. 76, No. 1-4, 1999, pp. 279-292. doi:10.1023/A:1002065931997
[4] M. E. Sanders, “Probiotics: Considerations for Human Health,” Issue Nutrition Reviews, Vol. 61, No. 3, 2003, pp. 91-99. doi:10.1301/nr.2003.marr.91-99
[5] C. N. Jacobsen, N. Rosenfeldt, V. Hayford, A. E. Moller, P. L. Michaelsen, K. F. Paerregaard, A. Sandstrom, M. B. Tvede and M. Jakobsen, “Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by in Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans,” Applied and Environmental Microbiology, Vol. 65, No. 11, 1999, pp. 4949-4956.
[6] T. Vesa, P. Pochart and P. Marteau, “Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG1363 in the Human Gastrointestinal Tract,” Alimentary Pharmacology & Therapeutics, Vol. 14, No. 6, 2000, pp. 823-828. doi:10.1046/j.1365-2036.2000.00763.x
[7] C. de Champs, N. Maroncle, D. Balestrino, C. Rich and C. Forestier, “Persistence of colonization of Intestinal Mucosa by a Probiotic Strain, Lactobacillus casei Subsp. rhamnosus LCR35, after Oral Consumption,” Journal of Clinical Microbiology, Vol. 41, No. 3, 2003, pp. 1270-1273. doi:10.1128/JCM.41.3.1270-1273.2003
[8] N. Valeur, P. Engel, N. Carbajal, E. Connolly and K. Ladefoged, “Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract,” Applied and Environmental Microbiology, Vol. 70, No. 2, 2004, pp. 1176-1181. doi:10.1128/AEM.70.2.1176-1181.2004
[9] T. D. Klingberg and B. B. Budde, “The Survival and Persistence in the Human Gastrointestinal Tract of Five Potential Probiotic Lactobacilli Consumed as Freeze- Dried Cultures or as Probiotic Sausage,” International Journal of Food Microbiology, Vol. 109, No. 1-2, 2006, pp. 157-159. doi:10.1016/j.ijfoodmicro.2006.01.014
[10] R. Oozeer, A. Leplingard, D. D. Mater, A. Mogenet, R. Michelin, I. Seksek, P. Marteau, J. Dore, J. L. Bresson and G. Corthier, “Survival of Lactobacillus casei in the Human Digestive Tract after Consumption of Fermented Milk,” Applied and Environmental Microbiology, Vol. 72, No. 8, 2006, pp. 5615-5617. doi:10.1128/AEM.00722-06
[11] K. M. Tuohy, M. Pinart-Gilberga, M. Jones, L. Hoyles, A. L. McCartney and G. R. Gibson, “Survivability of a Probiotic Lactobacillus casei in the Gastrointestinal Tract of Healthy Human Volunteers and Its Impact on the Faecal Microflora,” Journal of Applied Microbiology, Vol. 102, No. 4, 2007, pp. 1026-1032.
[12] Y. E. Dommels, R. A. Kemperman, Y. E. Zebregs, R. B. Draaisma, A. Jol, D. A. Wolvers, E. E. Vaughan and R. Albers, “Survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG in the Human Gastrointestinal Tract with Daily Consumption of a Low-Fat Probiotic Spread,” Applied and Environmental Microbiology, Vol. 75, No. 19, 2009, pp. 6198-6204. doi:10.1128/AEM.01054-09
[13] B. Stecher and W. D. Hardt, “Mechanisms Controlling Pathogen Colonization of the Gut,” Current Opinion in Microbiology, Vol. 14, No. 1, 2011, pp. 82-91. doi:10.1016/j.mib.2010.10.003
[14] J. Walter, “Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for Fundamental and Bio- medical Research,” Applied and Environmental Microbiology, Vol. 74, 2008, pp. 4985-4996. doi:10.1128/AEM.00753-08
[15] G. W. Tannock, K. Munro, H. J. Harmsen, G. W. Welling, J. Smart and P. K. Gopal, “Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosus DR20,” Applied and Environmental Microbiology, Vol. 66, No. 6, 2000, pp. 2578-2588. doi:10.1128/AEM.66.6.2578-2588.2000
[16] G. Reuter, “The Lactobacillus and Bifidobacterium Microflora of the Human Intestine: Composition and Succession,” Current Issues in Intestinal Microbiology, Vol. 2, No. 2, 2001, pp. 43-53.
[17] D. C. Savage, “Microbial Ecology of the Gastrointestinal Tract,” Annual Review of Microbiology, Vol. 31, 1977, pp. 107-133. doi:10.1146/annurev.mi.31.100177.000543
[18] M. A. Azcarate-Peril, E. Altermann, Y. J. Goh, R. Tallon, R. B. Sanozky-Dawes, E. A. Pfeiler, S. O’Flaherty, B. L. Buck, A. Dobson, T. Duong, M. J. Miller, R. Barrangou and T. R. Klaenhammer, “Analysis of the Genome Sequence of Lactobacillus gasseri ATCC 33323 Reveals the Molecular Basis of an Autochthonous Intestinal Organism,” Applied and Environmental Microbiology, Vol. 74, No. 15, 2008, pp. 4610-4625. doi:10.1128/AEM.00054-08
[19] B. M. Forde, B. A. Neville, M. M. O’Donnell, E. Riboulet-Bisson, M. J. Claesson, A. Coghlan, R. P. Ross and P. W. O’Toole, “Genome Sequences and Comparative Genomics of Two Lactobacillus ruminis Strains from the Bovine and Human Intestinal Tracts,” Microbial Cell Factories, Vol. 10, Suppl. 1, 2011, p. S13. doi:10.1186/1475-2859-10-S1-S13
[20] S. A. Frese, A. K. Benson, G. W. Tannock, D. M. Loach, J. Kim, M. Zhang, P. L. Oh, N. C. Heng, P. B. Patil, N. Juge, D. A. Mackenzie, B. M. Pearson, A. Lapidus, E. Dalin, H. Tice, E. Goltsman, M. Land, L. Hauser, N. Ivanova, N. C. Kyrpides and J. Walter, “The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri,” PLoS Genet, Vol. 7, No. 2, 2011, Article ID: e1001314. doi:10.1371/journal.pgen.1001314
[21] P. L. Oh, A. K. Benson, D. A. Peterson, P. B. Patil, E. N. Moriyama, S. Roos and J. Walter, “Diversification of the Gut Symbiont Lactobacillus reuteri as a Result of Host- Driven Evolution,” The ISME Journal, Vol. 4, No. 3, 2010, pp. 377-387. doi:10.1038/ismej.2009.123
[22] S. Rabot, J. Rafter, G. T. Rijkers, B. Watzl and J. M. Antoine, “Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Impact of Probiotics on Digestive System Metabolism,” Journal of Nutrition, Vol. 140, No. 3, 2010, pp. 677S-689S. doi:10.3945/jn.109.113738
[23] M. E. Sanders and T. R. Klaenhammer, “Invited Review: The Scientific Basis of Lactobacillus acidophilus NCFM Functionality as a Probiotic,” Journal of Dairy Science, Vol. 84, No. 2, 2001, pp. 319-331. doi:10.3168/jds.S0022-0302(01)74481-5
[24] J. Walter, C. Hertel, G. W. Tannock, C. M. Lis, K. Munro and W. P. Hammes, “Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophoresis,” Applied and Environmental Microbiology, Vol. 67, No. 6, 2001, pp. 2578-2585. doi:10.1128/AEM.67.6.2578-2585.2001
[25] E. Wesney and G. W. Tannock, “Association of Rat, Pig, and Fowl Biotypes of Lactobacilli with the Stomach of Gnotobiotic Mice,” Microbial Ecology, Vol. 5, No. 1, 1979, pp. 35-42. doi:10.1007/BF02010576
[26] S. Roos, F. Karner, L. Axelsson and H. Jonsson, “Lacto- bacillus Mucosae sp. nov., a New Species with in Vitro Mucus-Binding Activity Isolated from Pig Intestine,” International Journal of Systematic and Evolutionary Microbiology, Vol. 50, No. 1, 2000, pp. 251-258. doi:10.1099/00207713-50-1-251
[27] L. Axelsson and S. Lindgren, “Characterization and DNA Homology of Lactobacillus Strains Isolated from Pig In- testine,” Journal of Applied Bacteriology, Vol. 62, No. 5, 1987, pp. 433-440. doi:10.1111/j.1365-2672.1987.tb02673.x
[28] C. Efthymiou and P. A. Hansen, “An Antigenic Analysis of Lactobacillus Acidophilus,” The Journal of Infectious Diseases, Vol. 110, No. 3, 1962, pp. 258-267. doi:10.1093/infdis/110.3.258
[29] I. Martinez, J. Kim, P. R. Duffy, V. L. Schlegel and J. Walter, “Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects,” PLoS One, Vol. 5, No. 11, 2010, p. e15046. doi:10.1371/journal.pone.0015046
[30] P. Kabadjova, X. Dousset, V. Le Cam and H. Prevost, “Differentiation of Closely Related Carnobacterium Food Isolates Based on 16s-23s Ribosomal DNA Intergenic Spacer Region Polymorphism,” Applied and Environmental Microbiology, Vol. 68, No. 11, 2002, pp. 5358-5366. doi:10.1128/AEM.68.11.5358-5366.2002
[31] M. Haarman and J. Knol, “Quantitative Real-Time PCR Analysis of Fecal Lactobacillus Species in Infants Receiving a Prebiotic Infant Formula,” Applied and Environmental Microbiology, Vol. 72, No. 4, 2006, pp. 2359-2365. doi:10.1128/AEM.72.4.2359-2365.2006
[32] C. B. Meroth, J. Walter, C. Hertel, M. J. Brandt and W. P. Hammes, “Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Electrophoresis,” Applied and Environmental Microbiology, Vol. 69, No. 1, 2003, pp. 475-482. doi:10.1128/AEM.69.1.475-482.2003
[33] S. Hammons, P. L. Oh, I. Martinez, K. Clark, V. L. Schlegel, E. Sitorius, S. E. Scheideler and J. Walter, “A Small Variation in Diet Influences the Lactobacillus Strain Composition in the Crop of Broiler Chickens,” Systematic and Applied Microbiology, Vol. 33, No. 5, 2010, pp. 275-281. doi:10.1016/j.syapm.2010.04.003
[34] B. Dal, F. Walter, W. J., Hammes and C. Hertel, “Increased Complexity of the Species Composition of Lactic Acid Bacteria in Human Feces Revealed by Alternative Incubation Condition,” Microbial Ecology, Vol. 45, No. 4, 2003, pp. 455-463. doi:10.1007/s00248-003-2001-z
[35] J. Sui, S. Leighton, F. Busta and L. Brady, “16s Ribosomal DNA Analysis of the Faecal Lactobacilli Composition of Human Subjects Consuming a Probiotic Strain Lactobacillus acidophilus NCFM,” Journal of Applied Microbiology, Vol. 93, No. 5, 2002, pp. 907-912. doi:10.1046/j.1365-2672.2002.01767.x
[36] M. Watanabe, H. Kinoshita, M. Nitta, R. Yukishita, Y. Kawai, K. Kimura, N. Taketomo, Y. Yamazaki, Y. Tateno, K. Miura, A. Horii, H. Kitazawa and T. Saito, “Identification of a New Adhesin-Like Protein from Lactobacillus mucosae ME-340 with Specific Affinity to the Human Blood Group a and b Antigens,” Journal of Applied Microbiology, Vol. 109, No. 3, 2010, pp. 927-935. doi:10.1111/j.1365-2672.2010.04719.x
[37] L. Dethlefsen, P. B. Eckburg, E. M. Bik and D. A. Relman, “Assembly of the Human Intestinal Microbiota,” Trends in Ecology & Evolution, Vol. 21, No. 9, 2006, pp. 517-523. doi:10.1016/j.tree.2006.06.013
[38] J. Cavender-Bares, K. H. Kozak, P. V. Fine and S. W. Kembel, “The Merging of Community Ecology and Phylogenetic Biology,” Ecology Letters, Vol. 12, No. 7, 2009, pp. 693-715. doi:10.1111/j.1461-0248.2009.01314.x
[39] J. Walter and R. Ley, “The Human Gut Microbiome: Ecology and Recent Evolutionary Changes,” Annual Review of Microbiology, Vol. 65, No. 10, 2011, pp. 411-429. doi:10.1146/annurev-micro-090110-102830
[40] A. Khoruts, J. Dicksved, J. K. Jansson and M. J. Sadowsky, “Changes in the Composition of the Human Fecal Microbiome after Bacteriotherapy for Recurrent Clostridium difficile-Associated Diarrhea,” Journal of Clinical Gastroenterology, Vol. 44, No. 5, 2010, pp. 354-360.
[41] J. O’Callaghan and P. W. O’Toole, “Lactobacillus: Host-Microbe Relationships,” Current Topics in Microbiology and Immunology, in press, 2012.

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.