Mortar-Pestle and Microwave Assisted Regioselective Nitration of Aromatic Compounds in Presence of Certain Group V and VI Metal Salts under Solvent Free Conditions

Abstract

Solvent – free Mortar-pestle (grinding) and microwave-assisted nitration reactions (MWANR’s) underwent smoothly in the presence of group V and VI metal salts with high regio-selectivity for anilides, moderately- and non-activated aro-matic compounds. The reactions were conducted under solvent-free conditions, which afforded good to excellent yields. The observed reaction times in MW assisted conditions are in the range of only few minutes.

Share and Cite:

S. Sana, K. Reddy, K. Rajanna, M. Venkateswarlu and M. Ali, "Mortar-Pestle and Microwave Assisted Regioselective Nitration of Aromatic Compounds in Presence of Certain Group V and VI Metal Salts under Solvent Free Conditions," International Journal of Organic Chemistry, Vol. 2 No. 3, 2012, pp. 233-247. doi: 10.4236/ijoc.2012.23032.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Booth, “Nitro Compounds, Aromatic,” Ullmann’s Ency-clopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
[2] G. A. Olah, R. Malhorta and S. C. Narang, “Nitration: Methods and Mechanisms,” VCH Publishers, New York, 1989.
[3] H. Zollinger, “Color Chemistry: Properties and Applications of Organic Dyes,” 2nd Edition, John Wiley, New York, 1991.
[4] R. Meyer, J. Kholar and A. Homburg, “Explosives,” 5th Edition, John Wiley, New York, 2002.
[5] M. B. Smith and J. March, “March’s Advanced Organic Chemistry,” 5th Edition, John Wiley, New York, 2001.
[6] S. P. Dagade, S. B. Waghmode, V. S. Kadam and M. K. Dongare, “Vapor Phase Nitration of Toluene Using Dilute Nitric Acid and Molecular Modeling Studies over Beta Zeolite,” Applied Catalysis A: General, Vol. 226, No. 13, 2002, pp. 49-61. doi:10.1016/S0926-860X(01)00882-1
[7] T. Esakkidurai and K. Pitchumani, “Zeolite-Mediated Regioselective Nitration of Phenol in Solid State,” Journal of Molecular Catalysis A: Chemical, Vol. 185, No. 1-2, 2002, pp.305-309. doi:10.1016/S1381-1169(02)00135-8
[8] M. A. Zolfigol, E. Ghaemi and E. Madrakian, “Trichloroisocyanuric Acid/NaNO2 as a Novel Heterogeneous System for the Selective Mononitration of Phenols under Mild Conditions,” Synlett, No. 2, 2003, pp.191-194. doi:10.1002/chin.200319081
[9] H. A. Muathen, “Selective Nitration of Aromatic Compounds with Bismuth Subnitrate and Thionyl Chloride,” Molecules, Vol. 8, No. 7, 2003, pp. 593-598. doi:10.3390/80700593
[10] N. M. Leonard, L. C. Wieland and R. S. Mohan, “Applications of Bismuth(III) Compounds in Organic Synthsis,” Tetrahedron, Vol. 58, No. 42, 2002, pp. 8373-8397. doi:10.1016/S0040-4020(02)01000-1
[11] H. Suzuki, T. Ikegami and Y. Matano, “Bismuth in Organic Transformations,” Synthesis, No. 3, 1997, pp. 249- 267. doi: 0.1055/s-1997-1194
[12] J. H. Ridd, “Some Unconventional Pathways in Aromatic Nitration,” Acta Chemica Scandinavica, Vol. 52, No. 1, 1998, pp. 11-22. doi:10.3891/acta.chem.scand.52-0011
[13] P. T. Anastas and J. C. Warner, “Green Chemistry: The- ory and Practice,” Oxford University Press, New York, 1998.
[14] P. T. Anastas and T. C. Williamson, “Green Chemistry: Designing Chemistry for the Environment,” American Chemical Society, Washington, DC, 1996.
[15] P. T. Anastas and L. G. Heine, “Green Chemical Synthesis and Processes,” American Chemical Society, Washington, DC, 2000.
[16] S. K. Ritter, Chem. Eng. News 2001, pp 27-34.
[17] P.T. Anastas, M. M. Kirchhoff, “Origin, Current Status, and Future Challenges of Green Chemistry,” Accounts of Chemical Research, Vol. 35, No. 9, 2002, pp. 686- 694. doi:10.1021/ar010065m
[18] M. Lancaster, “Green Chemistry: An Introductory Text,” RSC, Cambridge, 2002.
[19] A. Yamamoto, “Toward Development of Environmentally Benign Processes Catalyzed by Transition-Metal Complexes,” Pure and Applied Chemistry, Vol. 74, No. 1, 2002, pp. 1-6. doi:10.1351/pac200274010001
[20] M. Eissen and J. O. Metzger, “Environmental Performance Metrics for Daily Use in Synthetic Chemistry,” Chemistry—A European Journal, Vol. 8, No. 16, 2002, pp. 3580-3585. doi:10.1002/1521-3765(20020816
[21] B. M Trost, “The Atom Economy: A Search for Synthetic Efficiency,” Science, Vol. 254, No. 5037, 1991, pp. 1471- 1477. doi:10.1126/science.1962206
[22] B. M. Trost, “Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Ange-wandte Chemie International Edition in English, Vol. 34, No. 3, 1995, pp. 259-281. doi:10.1002/anie.199502591
[23] B. M. Trost, “On Inventing Reactions for Atom Econ- omy,” Accounts of Chemical Re-search, Vol. 35, No. 9, 2002, pp. 695-705. doi:10.1021/ar010068z
[24] D. M. P. Mingos and I. P. Beletskaya, Eds. “Atom Efficient Organic Synthesis,” Journal of Organometallic Chemistry, Vol. 23, 2004, pp. 689-697.
[25] F. Alonso, I. P. Beletskaya and Miguel Yusa, “Non-Conventional Methodologies for Transition-Metal Catalysed Carbon–Carbon Coupling: A Critical Overview. Part 1: The Heck Reaction,” Tetrahedron, Vol. 61, No. 50, 2005, pp. 11771-11835. doi:10.1016/j.tet.2005.08.054
[26] D. C. Dittmer, “‘No-Solvent’ Organic Synthesis,” Chemistry & Industry, No. 19, 1997, pp. 779-784.
[27] A. Kumar and S. Sharma, “A Grinding-Induced Catalyst- and Solvent-Free Synthesis of Highly Functionalized 1,4- Dihydropyridines via a Domino Multicomponent Reaction,” Green Chemistry, Vol. 13, No. 8, 2011, pp. 2017- 2020. doi:10.1039/C1GC15223H
[28] K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews, Vol. 100, No. 3, 2000, pp. 1025- 1074.
[29] A. Loupy, “Solvent-Free Reactions,” Modern Solvents in Organic Synthesis, Vol. 206, 1999, pp. 153-207. doi:10.1007/3-540-48664-X_7
[30] R. A. Sheldon, “Green Solvents for Sustainable Organic Synthesis: State of the Art,” Green Chemistry, Vol. 7, No. 5, 2005, pp. 267-278. doi:10.1039/B418069K
[31] C. Suryanarayana, “Mechanical Alloying and Milling” Progress in Materials Science, Vol. 46, No. 1-2, 2001, pp. 1-184.
[32] R. Janot and D. Guérard, “Ball-Milling in Liquid Media: Applications to the Preparation of Anodic Materials for Lithium-Ion Batteries,” Progress in Materials Science, Vol. 50, No. 1, 2005, pp. 1-92. doi:10.1016/S0079-6425(03)00050-1
[33] A. L. Garay, A. Pichon and S. L. James., “Solvent-Free Synthesis of Metal Complex,” Chemical Society Reviews, Vol. 36, No. 6, 2007, pp. 846-855. doi:10.1039/b600363j
[34] A. Orita, L. S. Jiang, T. Nakano, N. Ma and J. Otera, “Solventless Reaction Dramatically Accelerates Supra- molecular Self-Assembly,” Chemical Communications, No. 13, 2002, pp.1362. doi:10.1039/b203651g
[35] P. Lidstrom, J. Tierney, B. Wathey and J. Westman, “Mi- crowave Assisted Organic Synthesis—A Review,” Tet- rahedron, Vol. 57, No. 45, 2001, pp. 9225-9283. doi.10.1016/S0040-4020(01)00906-1
[36] C. O. Kappe and D. Dallinger, “The Impact of Micro- wave Synthesis on Drug Discovery,” Nature Reviews Drug Discovery, Vol. 5, No. 1, 2006, pp. 51-63. doi:10.1038/nrd1926
[37] A. K. Nagariya, A. K. Meena, K. Kiran, A. K. Yadav, U. S. Niranjan, A. K. Pathak, B. Singh and M. M. Rao, “Microwave Assisted Organic Reaction as New Tool in Organic Synthesis,” Journal of pharmacy Research, Vol. 3, 2010, pp.575-580.
[38] F. Toda, “Solid State Organic Chemistry: Efficient Reactions, Remarkable Yields, and Stereoselectivity,” Accounts of Chemical Research, Vol. 28, No. 12, 1995, pp. 480-486. doi:10.1021/ar00060a003
[39] R. S. Varma, “Clay and Clay-Supported Reagents in Organic Synthesis,” Tetrahedron, Vol. 58, No. 7, 2002, pp 1235-1255. doi:10.1016/S0040-4020(01)01216-9,
[40] M. Kidwai, R. Venkataraman and B. Dave. “Solventless Synthesis of Thiohydantoins over K2CO3,” Green Chemistry, Vol. 3, No. 6, 2001, pp. 278-279. doi:10.1039/B106034C
[41] C. O. Kappe., “Controlled Microwave Heating in Modern Organic Synthesis,” Angewandte Chemie International Edition, Vol. 43, No. 46, 2004, pp. 6250-6284. doi:10.1002/anie.200400655
[42] C. O. Kappe and A. Stadler, “Microwaves in Organic and Medicinal Chemistry,” Wiley-VCH, Weinheim, 2005.
[43] A. Loupy, “Microwaves in Organic Synthesis,” Wiley- VCH, Weinheim, 2005.
[44] B. Botta, G. Delle Monache, G. Zappia, et al., “Synthesis and Interaction with Copper(II) Cations of Cyano- and Aminoresorcin[4]arenas,” The Journal of Organic Chemistry, Vol. 67, No. 4, 2002, pp. 1178-1183. doi:10.1021/jo010844g
[45] R. N. Gedye, F. E. Smith and K. C. Westaway, “The Rapid Synthesis of Organic Compounds in Microwave Ovens,” Canadian Journal of Chemistry, Vol. 66, No. 1, 1988, pp. 17-26. doi:10.1139/v88-003
[46] A. Loupy, L. Perreux, M. Liagre, K. Burle and M. Moneuse, “Reactivity and Selectivity under Microwaves in Organic Chemistry. Relation with Medium Effects and Reaction Mechanisms,” Pure and Applied Chemistry, Vol. 73, No. 1, 2001, pp. 161-166. doi:10.1351/pac200173010161
[47] L. Perreux and A. Loupy, “A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations,” Tet- rahedron, Vol. 57, No. 45, 2001, pp. 9199-9223. doi:10.1016/S0040-4020(01)00905-X.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.