Effect of the Doping Layer Concentration on Optical Absorption in Si δ-Doped GaAs Layer

Abstract

We study in this paper the intersubband optical absorption of Si doped GaAs layer for different applied electric fields and donors concentration. The electronic structure has been calculated by solving the Schr?dinger and Poisson equations self-consistently. From our results, it is clear that the subband energies and intersubband optical absorption are quite sensitive to the applied electric field. Also our results indicate that the optical absorption depends not only on the electric field but also on the donor’s concentration. The results of this work should provide useful guidance for the design of optically pumped quantum well lasers and quantum well infrared photo detectors (QWIPs).

Share and Cite:

Dakhlaoui, H. (2012) Effect of the Doping Layer Concentration on Optical Absorption in Si δ-Doped GaAs Layer. Optics and Photonics Journal, 2, 140-144. doi: 10.4236/opj.2012.23020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. F. Schubert, A. Fischer and K. Ploog, “The DeltaDoped Field-Effect Transistor,” IEEE Transactions on Electron Devices, Vol. 33, No. 5, 1986, pp. 625-632. doi:10.1109/T-ED.1986.22543
[2] K. Ploog, M. Hauser and A. Fischer,“Fundamental Studies and Device Application of δ-Doping in GaAs Layers and in AlxGa1?xAs/GaAs Heterostructures,” Applied Physics A: Materials Science & Processing, Vol. 45, No. 3, 1988, pp. 233-244. doi:10.1007/BF00615010
[3] J. Kortus and J. Monecke, “Formation of Subbands in δ-Doped Semiconductors,” Physical Review B, Vol. 49, No. 24, 1994, pp. 17216-17223.
[4] L.Ioratti, “Thomas-Fermi Theory of δ-Doped Semiconductor Structures: Exact Analytical Results in the High Density Limit,” Physical Review B, Vol. 41, No. 12, 1990, pp. 8340-8344.
[5] M. H. Degani, “Energy Electron Levels in a δ-Doped Layer in GaAs,” Physical Review B, Vol. 44, No. 11, 1991, pp. 5580-5584.
[6] A. Zrenner, F. Koch and K. Ploog, “Subband Physics for a ‘Realistic’ δ-Doping Layer,” Surface Science, Vol. 196, No. 1-3, 1988, pp. 671-676
[7] F. Dominguez-Adame, B. Mendez and E. Macia, “Electronic Structure of Si Delta-Doped GaAs in an Electric Field,” Semiconductor Science and Technology, Vol. 9, No. 3, 1991, p. 263.
[8] F. Dominguez-Adame and B. Mendez, “Stark Ladders in Periodically Si-δ-Doped GaAs,” Physical Review B, Vol. 49, No. 16, 1994, p. 11471.
[9] X. Zheng, T. K. Carns, K. L. Wang and B. Wu, “Electron Mobility Enhancement from Coupled Wells in DeltaDoped GaAs,” Applied Physics Letters, Vol. 62, No. 5, 1993, pp. 504-507. doi:10.1063/1.108893
[10] R. J. Turton and M. Jaros, “Intersubband Optical Transitions in Si-Si0.5Ge0.5,” Applied Physics Letters, Vol. 54, No. 20, 1989, pp. 1986-1988. doi:10.1063/1.101190
[11] D. Ahn and S. L. Chuang, “Intersubband Optical Absorption in Quantum Well with an Applied Electric Field,” Physical Review B, Vol. 35, No. 8, 1987, p. 4149. doi:10.1103/PhysRevB.35.4149
[12] D. Ahn and S. L. Chuang, “Exact Calculations of Quasibound States of an Isolated Quantum Well with Uniform Electric Field: Quantum-Well Stark Resonance,” Physical Review B, Vol. 34 No. 12, 1986, pp. 9034-9037. doi:10.1103/PhysRevB.34.9034
[13] R. F. Kazarinov and R. A. Suris, “Possibility of the Amplification of Electromagnetic Waves in a Semiconductor with a Superlattice,” Soviet Physics—Semiconductors, Vol. 5, No. 4, 1971, p. 707
[14] D. Ahn and S. L. Chuang, “Optical Transitions in a Parabolic Quantum Well with an Applied Electric Field-Analytical Solutions,” IEEE Journal of Quantum Electronics, Vol. 23, No. 12, 1987, p. 2196.
[15] C. T. Giner and J. L. Gondar, “Exact Wave Functions and Energy Levels for a Quantum Well with an Applied Electric Field,” Physica A & B, Vol. 138, No. 3, 1986, pp. 287-294. doi:10.1016/0378-4363(86)90009-4
[16] N. G. Semaltianos, “Photoluminescence Studies of GaAs/ AlGaAs Multiple Quantum Well Heterostructures,” Journal of Physics and Chemistry of Solids, Vol. 63, No. 2, 2002, pp. 273-277. doi:10.1016/S0022-3697(01)00140-8
[17] V. Albe and L. J. Lewis, “Optical properties of InAs/InP Ultrathin Quantum Wells,” Physica B: Condensed Matter, Vol. 301, No. 3-4, 2001, pp. 233-238. doi:10.1016/S0921-4526(01)00269-1
[18] D. Ahn, “Intersubband Transitions in Doped Semiconductor with an Applied Electric Field: Exact Solutions,” Physical Review B, Vol. 48, No. 11, 1993, pp. 7981-7985. doi:10.1103/PhysRevB.48.7981
[19] V. A. Kul’Bachinskii, et al., “Transport and Optical Properties of Tin δ-Doped GaAs Structures,” Semiconductors, Vol. 33, No. 7, 1999, pp. 771-778.
[20] K. T. Kim, et al., “Inter-Miniband Optical Absorption in a Modulation-Doped AlxGa(1?x)As/GaAs Superlattice,” Journal of Applied Physics, Vol. 69, No. 9, 1991, pp. 66176624. doi:10.1063/1.348875
[21] J. A. Cuesta, A. Sanchez and F. Dominguez-Adame, “Self-Consistent Analysis of Electric Field Effects on Si Delta-Doped GaAs,” Semiconductor Science and Technology, Vol. 10, No. 10, 1995, p. 1303. doi:10.1088/0268-1242/10/10/002
[22] Emine Ozturk and Ismail Sokmen, “The Electric Field Effects on Intersubband Optical Absorption of Si δDoped Gaas Layer,” Solid State Communications, Vol. 126, No. 11, 2003, pp. 605-609. doi:10.1016/S0038-1098(03)00301-6
[23] J. Osvald, “Electronic Properties of a near Surface Si δ-Doped GaAs under an Applied Electric Field,” Journal of Physics D: Applied Physics, Vol. 37, No. 19, 2004, p. 2655. doi:10.1088/0022-3727/37/19/007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.