JBBS> Vol.2 No.3, August 2012
Downloads: 701     Views: 2,305

A Review of Epilepsy Diagnosis Using PET Parameters

DownloadDownload as PDF (Size:250KB) Full-Text HTML PP. 415-425   DOI: 10.4236/jbbs.2012.23049

ABSTRACT

Epilepsy is caused by abnormal excessive electric discharges from the neurons in the brain. Epileptic seizures are non- specific responses of the brain to many types of insults. The structural abnormalities causing epilepsy can be identified using various state of art imaging methods. Through a combination of brain activity monitoring, imaging and mapping techniques, physicians can locate the specific area in the brain causing epileptic discharges and identify its location in relation to those areas in the brain controlling vital functions. Positron Emission Tomography (PET) has emerged as a useful tool to identify abnormal metabolic activity of the epileptogenic foci. Parameters like asymmetric index, stan- dard uptake value (SUV) etc obtained by PET are processed and analyzed for identifying the origin of epileptic sei- zures. This paper discuss the techniques used to diagnose in general and to localize the epileptogenic regions using post-processing other features on PET imaging.

KEYWORDS


Cite this paper

Y. Kumar, S. Mehta and U. Patil, "A Review of Epilepsy Diagnosis Using PET Parameters," Journal of Behavioral and Brain Science, Vol. 2 No. 3, 2012, pp. 415-425. doi: 10.4236/jbbs.2012.23049.

References

[1] A. S. Fauci, E. Braunwald, D. L. Kasper, S. L. Hauser, D. L. Longo, J. L. Jameson and J. Loscalz, “Harrison Principles of Internal Medicine,” 17th Edition, McGraw-Hill Professional, New York, 2008.
[2] N. Pillay, “Epilepsy: Medical and Surgical Approaches,” Canadian Journal of Continuing Medical Education, 2001, pp. 224-232.
[3] M. Castillo, “Imaging Intractable Epilepsy: How Many Tests Are Enough?” American Journal of Neuro Radiology, Vol. 20, No. 20, 1999, pp. 534-536.
[4] M. I. El-Gohary, A. S. A. Mohamed, M. M. Dahab, M. A. Ibrahim, A. A. El-Saied and H. A. Ayoub, “Diagnosis of Epilepsy by Artificial Neural Network,” Journal of Biological Science, Vol. 8, No. 2, 2008, pp. 451-455. doi:10.3923/jbs.2008.451.455
[5] C. M. Verity, “The Place of the EEG and Imaging in the Management of Seizures,” Archives of Disease in the Childhood, Vol. 73, No. 6, 1995, pp. 557-562. doi:10.1136/adc.73.6.557
[6] C. M. Michela, M. M. Murraya, G. Lantza, S. Gonzaleza, L. Spinellib and R. G. de Peraltaa, “EEG Source Imaging,” Clinical Neurophysiology, Vol. 115, No. 10, 2004, 2004, pp. 2195-2222.
[7] A. Hashizume, “Functional Brain Mapping and Localizing Epileptic Zone with Magneto Encephalography: A Review of Two Cases with Illustrations,” Nepal Journal of Neuroscience, Vol. 4, 2007, pp. 106-109.
[8] R. G. de P. Menendez, S. L. G. Andino, M. S, C. M. Michel and T. Landis, “Imaging the Electrical Activity of the Brain: ELECTRA,” Human Brain Mapping, Vol. 9, No. 1, 2000, pp. 1-12. doi:10.1002/(SICI)1097-0193(2000)9:1<1::AID-HBM1>3.0.CO;2-#
[9] J. Duncana, “The Current Status of Neuro Imaging for Epilepsy,” Current Opinion in Neurology, Vol. 22, No. 2, 2009, pp. 179-184.
[10] T. M. Salmenpera and J. S. Duncan, “Imaging in Epilepsy,” Journal of Neurology, Neurosurgery and Psychiatry, Vol. 76, No. 3, 2005, pp. 2-10.
[11] K. Engel, B. Bandelow, O. Gruber and D. Wedekind, “Neuroimaging in Anxiety Disorders,” Journal of Neural Transmission, Vol. 116, No. 6, 2009, pp. 703-716. doi:10.1007/s00702-008-0077-9
[12] W. Dzienis1, E. Tarasów, J. Kochanowicz, A. Szulc, J. Walecki and B. Kubas, “Utility of Computed Tomography and Selected MR Sequences in the Diagnostics of Patients with Partial Epileptic Attacks,” Medical Science Monitor, Vol. 13, No. 1, 2007, pp. 49-54.
[13] K. Chapman, E. Wyllie, I. Najm, P. Ruggieri, W. Bingaman, J. Luders, D. Dinner and H. O. Luders, “Seizure Outcome after Epilepsy Surgery in Patients with Normal Preoperative MRI,” Journal of Neurology, Neurosurgery and Psychiatry, Vol. 76, No. 5, 2005, pp. 710-713. doi:10.1136/jnnp.2003.026757
[14] S. Rastogi and C. Lee and N Salamon, “Neuroimaging in Pediatric Epilepsy: A Multimodality Approach,” Radiographics, Vol. 28, No. 4, 2008, pp. 1079-1095.
[15] E. Scharff, X. Papademetris, H. P. Hetherington, J. W. Pan, H. Zaveri, H. Blumenfeld, R. B. Duckrow, S. S. Spencer, D. D. Spencer, J. S. Duncan and E. J. Novotny, “Correlation of Magnetic Resonance Spectroscopic Imaging and Intracranial EEG Localization of Seizures,” Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 6-9 April 2006, pp. 510-513.
[16] R. Sharma and R. Bargotra, “Magnetic Resonance Spectroscopy,” JK Science, Vol. 8 No. 3, 2006, pp. 176-178.
[17] R. P. Lystad and H. Pollard, “Functional Neuroimaging: A Brief Overview and Feasibility for Use in Chiropractic Research,” Journal of the Canadian Chiropractic Association, Vol. 53, No. 1, 2009, pp. 59-72.
[18] B. J. Casey, M. Davidson and B. Rosen, “Functional Magnetic Resonance Imaging: Basic Principles of and Application to Developmental Science,” Developmental Science, Vol. 5, No. 3, 2002, pp. 301-309. doi:10.1111/1467-7687.00370
[19] A. Golby, D. Branco, S. Whalen and J. C. da Costa, “Functional MRI Memory Mapping for Epilepsy Surgery Planning: A Case Report,” NeuroImage, Vol. 32, No. 2, 2006, pp. 592-602.
[20] R. C. Gonzalez and P. Wintz, “Digital Image Processing,” Addison-Wesley, Boston, 1977.
[21] A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data,” Prentice-Hall, New York, 1988.
[22] M. Desco, J. D. Gispert, S. Sreig, A. Santos, J. Pascau, N. Malpica and B. P. Garcia, “Statistical Segmentation of Multidimensional Brain Datasets,” SPIE Medical Imaging, Vol. 4322, No. 1, 2001, pp. 23-27.
[23] S. B. Mehta, C, Santanu, A. Bhattacharyya and A. Jena, “A Soft-Segmentation Visualization Scheme for Magnetic Resonance Images,” Magnetic Resonance Imaging, Vol. 23, No. 7, 2005, pp. 817-828.
[24] S. B. Mehta, C. Santanu, A. Bhattacharyya and A. Jena, “Handcrafted Fuzzy Rules for Tissue Classification,” Magnetic Resonance Imaging, Vol. 26, No. 6, 2008, pp. 815-823.
[25] S. B. Mehta, C. Santanu, A. Bhattacharyya and A. Jena, “Soft-Computing Based Diagnostic Tool for Analyzing Demyelination,” Applied Soft Computing, Vol. 10, No. 2, 2010, pp. 529-538.
[26] K. Tina, W. E. L. Grimson, W. M. Well and R. Kikinis, “Segmentation of Brain Tissue from Magnetic Resonance Images,” Medical Image Analysis, Vol. 1, No. 2, 1996, pp. 109-127. doi:10.1016/S1361-8415(96)80008-9
[27] P. A. Freeborough, N. C. Fox and R. I. Kitney, “Interactive Algorithm for the Segmentation and Quantization of 3D MRI Brain Scans,” Computer Methods and Programs in Biomedicines, Vol. 53, No. 1, 1997, pp. 15-25.
[28] L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan, L. O. Hall, R. W. Thatcher and M. L. Silbiger, “MRI Segmentation: Methods Applications,” Magnetic Resonance Imaging, Vol. 13, No. 3, 1995, pp. 343-368. doi:10.1016/0730-725X(94)00124-L
[29] M. Vermess, “Angiography in ‘Idiopathic’ Focal Epilepsy,” Annual Journal of Radiology, Vol. 115, No.1, 1972, pp. 121-128.
[30] R. Kuzniecky, “Clinical Applications of MR Spectroscopy in Epilepsy,” Neuroimaging Clinics of North America, Vol. 14, No. 3, 2004, pp. 349-578.
[31] L. Wichert-Ana, A. C. Santos and P. M. A. de Marques, “SPECT and PET Imaging in Epilepsy: Principles and Clinical Applications, Journal of Epilepsy and Clinical Neurophysiology, Vol. 11, No. 1, 2005, pp. 19-30.
[32] R. Chu, “PET: An Emerging Technology,” Proceedings of the Annual Symposium Computer Applied Medical Care, Vol. 1, 1980, pp. 469-475.
[33] L. Marinovich, “Positron Emission Tomography (PET) for Epilepsy,” Commonwealth of Australia, 2005.
[34] A. Louca, “Imaging Tumoral Proliferation with Positron Emission Tomography (PET),” Journal of Applied Sciences Research, Vol. 4, No. 11, 2008, 1337-1343.
[35] J. Blin, J. C. Baron, H. Cambon, A. M. Bonnett, B. Dubois and C. Loch, “Striatal Dopamine D2 Receptors in Tardive Dyskinesia: PET Study,” Journal of Neurology, Neurosurgery, and Psychiatry, Vol. 52, No. 11, 1989, pp. 1248-1252. doi:10.1136/jnnp.52.11.1248
[36] W. K. Evans, “Implementing of PET Imaging According to Evidencebased Guidelines in Ontario”, PET Steering Committee, Vol. 2, 2008, pp. 1-7.
[37] M. J. Koepp, C. Labbe, M. P. Richardson, D. J. Brooks, W. Van Paesschen and V. J. Cunningham, “Regional Hippocampal [11C] flumazenil PET in Temporal Lobe Epilepsy with Unilateral and Bilateral Hippocampal Sclerosis,” Brain, Vol. 120, No. 10, 1997, 1865-1876. doi:10.1093/brain/120.10.1865
[38] K. Herholz and W.-D. Heiss, “Positron Emission Tomography in Clinical Neurology,” Molecular Imaging & Biology, Vol. 6, No. 4, 2004, pp. 239-269. doi:10.1016/j.mibio.2004.05.002
[39] J. S. Duncan, “Imaging and Epilepsy,” Brain, Vol. 120, No. 2, 1997, pp. 339-377. doi:10.1093/brain/120.2.339
[40] W. H. Theodore, R. Brooks and R. Margolin, “Positron Emission Tomography in Generalized Seizures,” Neurology, Vol. 35, No. 5, 1985, pp. 684-690. doi:10.1212/WNL.35.5.684
[41] B. Andrew, “PET in Seizure Disorders,” Clinical Review, Vol. 43, No. 1, 2005, pp. 79-92.
[42] Y. Ohta, T. Nariai and K. Ishi, “Voxel- and ROI-Based Statistical Analyses of PET Parameters for Guidance in the Surgical Treatment of Intractable Mesial Temporal Lobe Epilepsy,” Annual Nuclear Medicine, Vol. 22, No. 6, 2008, pp. 495-503. doi:10.1007/s12149-008-0140-5
[43] K. Ishiwata, K. Ishii, Y. Kimura, K. Kawamura, K. Oda, T. Sasaki, M. Sakata and M. Senda, “Successive Positron Emission Tomography Measurement of Cerebral Blood Flow and Neuro Receptors in the human Brain: An 11C-SA4503 Study,” Annual of Nuclear Medicine, Vol. 22, No. 5, 2008, pp. 411-416.
[44] J. S. Lee, D. S. Lee, S.-K. Kim, S.K. Lee, J.-K. Chung, M. C. Lee and K. S. Park, “Localization of Epileptogenic Zones in F-18 FDG Brain PET of Patients with Temporal Lobe Epilepsy Using Artificial Neural Network,” IEEE Transactions on Medical Imaging, Vol. 19, No. 4, 2000, pp. 347-355. doi:10.1109/42.848185
[45] J. Thie, “Understanding the Standardized Uptake Value, Its Methods, and Implications for Usage,” Journal of Nuclear Medicine, Vol. 45, No. 9, pp. 1431-1434.
[46] N. Adachi, M. Koutroumanidis, R. D. C. Elwes, C. E. Polkey and C. D. Binnie, “Interictal 18FDG PET Findings in Temporal Lobe Epilepsy With Deja vu,” Journal of Neuropsychiatry Clinical Neuroscience, Vol. 11, No. 3, 1999, pp. 380-386.
[47] L. Junck, J. G. Moen, G. D. Hutchins, M. B. Brown and D. E. Kuhi, “Correlation Methods for the Centering, Rotation, and Alignment of Functional Brain Images,” The Journal of Nuclear Medicine, Vol. 31, No. 7, 1220-1226.
[48] C.-C. Liao, I-J. Chiang and J.-M. Wong, “Tracing the Deformed Midline on BrainCT,” Biomedical Engineering: Applications, Basis and Communications, Vol. 18, No. 6, 2006, pp. 305-311.
[49] K. W. Kang, D. S. Lee, J. H. Cho, J. S. Lee, J. S. Yeo, S. K. Lee, J.-K. Chung and M. C. Lee. “Quantification of F-18 FDG PET Images in Temporal Lobe Epilepsy Patients Using Probabilistic Brain Atlas,” NeuroImage, Vol. 14, No. 1, 2001, pp. 1-6. doi:10.1006/nimg.2001.0783
[50] E. Luders, C. Gaser, L. Jancke, and G. Schlaug, “A Voxel-Based Approach to Gray Matter Asymmetries,” NeuroImage, Vol. 22, No. 2, 2004, pp. 656-664. doi:10.1016/j.neuroimage.2004.01.032
[51] I. Yanovsky, P. M. Thompson, S. Osher and A. D. Leow, “Asymmetric and Symmetric Unbiased Image registration: Statistical Assessment of Performance,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, 23-28 June 2008, pp. 1-8.
[52] Y. K. Kumar and S. Mehta, “Asymmetry Analysis through Wavelet Transform in Brain Data,” 2010. http://priorartdatabase.com/IPCOM/000191413
[53] G.-J. Wang, N. D. Volkow, A. P. Wolf, J. D. Brodie and R. J. Hitzemann, “Intersubject Variability of Brain Glucose Metabolic Measurements in Young Normal Males,” The Journal of Nuclear Medicine, Vol. 35, No. 9, 1994, pp. 1457-1466.
[54] J. Rademacher and U. Burgel, “Variability and Asymmetry in the Human Percentral Motor System: A Cytoarchitectonic and Myoloarchitectonic Brain Mapping Study,” Journal of Neurology, Vol. 124, No. 11, 2001, pp. 2232-2258.
[55] Y. Ohta, T. Nariai, K. Ishii, K. Ishiwata, M. Mishina, M. Senda, K. Hirakawa and K. Ohno, “Voxel- and ROI- Based Statistical Analyses of PET Parameters for Guidance in the Surgical Treatment of Intractable Mesial Temporal Lobe Epilepsy,” Annual Nuclear Medical, Vol. 22, No. 6, 2008, pp. 495-503. doi:10.1007/s12149-008-0140-5

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.