ABC> Vol.2 No.3, August 2012
Views: 965    Downloads: 964

Cloning of multicopper oxidase gene from Ochrobactrum sp. 531 and characterization of its alkaline laccase activity towards phenolic substrates

DownloadDownload as PDF (Size:1410KB) Full-Text HTML PP. 248-255   DOI: 10.4236/abc.2012.23031

ABSTRACT

A 1602 bp fragment was cloned from a soil bacterium Ochrobactrum sp. 531. It contained an open reading frame (ORF) of 1092 bp which was identified as a multicopper oxidase (MCO) with potential laccase activity. After inserting the cloned gene into the expression vector pET23a, it was expressed in E. coli BL21(DE3)pLysS, and its product was purified to homogeneity through chromatography. The Ochrobactrum sp. 531 MCO, consisting of 533 amino acids with a molecular mass of 57.8 kDa, was quite stable in neutral pH and showed laccase-like activity oxidizing 2,6-dimethoxyphenol (DMP), 2,2’-azino-bis(3-ethylbe- nzthiazolinesulfonic acid) (ABTS), and syringaldazine (SGZ). The enzyme showed optimum activity towards DMP, ABTS, and SGZ at the pH 8.0, 3.6, and 7.5 respectively. Kinetic studies gave this enzyme Km, kcat and kcat//Km values of: 0.09 mM, 7.94 s–1, and 88.22 s–1?mM–1 for DMP; 0.072 mM, 2.95 s–1, and 40.97 s–1.mM–1 for ABTS; and 0.015 mM, 2.4 s–1, and 160 s–1.mM–1 for SGZ. Our results demonstrate that Ochrobactrum sp. 531 MCO is a bacterial laccase which oxidized phenolic substrates DMP and SGZ effectively under alkaline conditions. These unusual properties make the enzyme an interesting biocatalyst in applications for which classical laccases are unsuitable.

KEYWORDS


Cite this paper

Li, Y. , Zuo, W. , Li, Y. and Wang, X. (2012) Cloning of multicopper oxidase gene from Ochrobactrum sp. 531 and characterization of its alkaline laccase activity towards phenolic substrates. Advances in Biological Chemistry, 2, 248-255. doi: 10.4236/abc.2012.23031.

References

[1] Xu, F. (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608-7614. doi:10.1021/bi952971a
[2] Solomon, E.I., Sundaram, U.M. and Machonkin, T.E. (1996) Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563-2605. doi:10.1021/cr950046o
[3] Claus, H. (2003) Laccases and their occurrence in prokaryotes. Archives of microbiology, 179, 145-150.
[4] Endo, K., Hosono, K., Beppu, T. and Ueda, K. (2002) A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis. Microbiology, 148, 1767-1776.
[5] Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T. and Ueda, K. (2003) Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. Journal of biochemistry, 133, 671-677. doi:10.1093/jb/mvg086
[6] Suzuki, T., Endo, K., Tsujubo, H., Miyamoto, K. and Inamori, Y. (2003) A thermostable laccsase from Streptomyces griseus REN-7: Purification, characterization, mucleotide sequence and expression. Bioscience Biochemistry, 67, 2167-2175. doi:10.1271/bbb.67.2167
[7] Castro, S.S, Martine, D.G. and Okon, Y. (2002) Laccase activity in melanin-producing strain of Sinorhzobium meliloti. FEMS Microbiology Letters, 209, 119-125. doi:10.1111/j.1574-6968.2002.tb11119.x
[8] Sanchez, A.A. and Solano, F. (1997) A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. share catalytic capabilities of tyrosinases and laccases. Biochemical and Biophysical Research Communications, 240, 787-792. doi:10.1006/bbrc.1997.7748
[9] Grass, G. and Rensing, C. (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 286, 902-908. doi:10.1006/bbrc.2001.5474
[10] Kim, C., Lorenz, W.W., Hoopes, J.T. and Dean, J.F. (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. Journal of Bacteriology, 183, 4866-4875. doi:10.1128/JB.183.16.4866-4875.2001
[11] Li, Y., et al. (2008) Gene cloning, protein purification and enzymatic properties of multicopper oxidase (MCO) from Klebsiella sp. 601. Canadian Journal of Microbiology, 54, 725-733. doi:10.1139/W08-063
[12] Hullo, M.F., Moszer, I., Danchin, A. and Martin, V.I. (2001) CotA of Bacillus subtilis is a copper-dependent laccase. Journal of Bacteriology, 83, 5426-5430. doi:10.1128/JB.183.18.5426-5430.2001
[13] Claus, H. and Filip, Z. (1997) The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain. Microbiological Research, 152, 209-216. doi:10.1016/S0944-5013(97)80014-6
[14] Ruijssenaars, H.J. and Hartmans, S. (2004) A cloned Bacillus halodruans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology, 65, 177-182. doi:10.1007/s00253-004-1571-0
[15] Solomon, E.I., Baldwin, M.J. and Lowery, M.D. (1992) Electronic structures of active sites in copper proteins: Contributions to reactivity. Chemical Reviews, 92, 521- 542. doi:10.1021/cr00012a003
[16] Solano, F., Lucas-Elio, P., Lopez-Serrano, D., Fernandez, E. and Sanchez-Amat, A. (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiology Letters, 204, 175-181. doi:10.1111/j.1574-6968.2001.tb10882.x
[17] Li, X., et al. (2007) Crystal structures of E. coli laccase CueO at different copper concentrations. Biochemical and Biophysical Research Communications, 354, 21-26. doi:10.1016/j.bbrc.2006.12.116
[18] Roberts, S.A., et al. (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences USA, 99, 2766- 2771. doi:10.1073/pnas.052710499
[19] Kataoka, K., et al. (2007) Structure and function of the engineered multicopper oxidase CueO from Escherichia coli—Deletion of the methionine-rich helical region covering the substrate-binding site. Journal of Molecular Biology, 373, 141-152. doi:10.1016/j.jmb.2007.07.041
[20] Li, Y.D., Gong, Z.J., Li, X., Li, Y. and Wang, X.G. (2011) Engineering Klebsiella sp. 601 multicopper oxidase enhances the catalytic efficiency towards phenolic substrates. BMC Biochemistry, 12, 30. doi:10.1186/1471-2091-12-30
[21] Alexandre, G. and Zhulin, I.B. (2000) Laccases are wide-spread in bacteria. Trends in Biotechnology, 18, 41-42. doi:10.1016/S0167-7799(99)01406-7
[22] Claus, H. (2004) Laccases: Structure, reactions, distribution. Micron, 35, 93-96. doi:10.1016/j.micron.2003.10.029
[23] Rose, T.M., et al. (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research, 26, 628-1635. doi:10.1093/nar/26.7.1628
[24] Sambrook, J., Fritsch, E.J. and Maniatis, T. (2001) Molecular cloning: A laboratory manual. 3 rd Edition, Cold Spring Harbor Laboratory Press, New York.
[25] Solano, F., Lucas-Elío, P., López-Serrano, D., Fernández, E. and Sanchez-Amat, A. (2001) Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiology Letters, 204, 175-181. doi:10.1111/j.1574-6968.2001.tb10882.x
[26] Palmieri, G., et al. (1997) A novel white laccase from Pleurotus ostreatus. Journal of Biology Chemistry, 272, 31301-31307. doi:10.1074/jbc.272.50.31301
[27] Xu, F. (1997) Effect of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. Journal of Biology Chemistry, 272, 924-928.
[28] Xu, F., et al. (1998) Site-directed mutagenesis in fungal laccase: Effect on redox potential, activity and pH profile. The Biochemical Journal, 334, 63-70.
[29] Ye, M., Li, G., Liang, W.Q. and Liu, Y.H. (2010) Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and high soluble expression. Applied Microbiology and Biotechnology, 87, 1023-1031. doi:10.1007/s00253-010-2507-5

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.