Poly (ethylene terephthalate) synthesis with catalysts derived from chrysotile asbestos
Shigeki Habaue, Yusuke Takahashi, Yu Hosogoe, Hiroshi Yamashita, Meisetsu Kajiwara
.
DOI: 10.4236/ns.2010.26070   PDF    HTML     8,684 Downloads   17,972 Views   Citations

Abstract

The chrysotile asbestos was converted to the forsterite-type compounds by calcination at 740 and 800oC (F7-740 and F7-800), which were used as a catalyst for the polycondensation of bis(hydroxyethyl) terephthalate affording poly (ethylene terephthalate). The obtained forsterite-type compounds did not show any catalytic activity. However, the products obtained by simply treating them with acetic acid significantly promoted the polymerization that produced a THFinsoluble polymer. It was found that the polymer prepared with the acetic acid-treated F7-740 at 160oC for 2 h showed a 93% yield and the number average molecular weight of 6.4 × 103. The observed catalytic activity was higher than that for the acetic acid-treated magnesium oxide, as well as the typical polycondensation catalysts, such as magnesium acetate and antimony oxide.

Share and Cite:

Habaue, S. , Takahashi, Y. , Hosogoe, Y. , Yamashita, H. and Kajiwara, M. (2010) Poly (ethylene terephthalate) synthesis with catalysts derived from chrysotile asbestos. Natural Science, 2, 557-562. doi: 10.4236/ns.2010.26070.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] El-Toufaili, F.-A., Feix, G. and Reichert, K.-H. (2006) Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate). Journal of Polymer Science Part A: Polymer Chememistry, 44(3), 1049-1059.
[2] Lee, S.W., Ree, M., Park, C.E., Jung, Y.K., Park, C.-S., Jin, Y.S. and Bae, D.C. (1999) Synthesis and non-isothermal crystallization behaviors of poly(ethylene isophthalate-co-terephthalate)s. Polymer, 40(25), 7137-7146.
[3] Zhang, Y. and Gu, L. (2000) Study of non-isothermal crystallization kinetics and sequence distribution in poly (ethyele terephthalate-co-isophthalate). European Polymer Jounal, 36(5), 759-765.
[4] Greener, J., Gillmor, J.R. and Daly, R.C. (1993) Melt rheology of a class of polyester ionomers. Macromolecules, 26(24), 6416-6424.
[5] MacDonald, W.A. (2002) New advances in poly(ethylene terephthalate) polymerization and degradation. Polymer International, 51(10), 923-930.
[6] Gorzawski, H. and Hoelderich, W.F. (1999) Transesterification of methyl benzoate and dimethyl terephthalate with ethylene glycol over superbases. Applied Catalysis A: General, 179(1-2), 131-137.
[7] Meyer, U. and Hoelderich, W.F. (1999) Transesterification of methyl benzoate and dimethyl terephthalate with ethylene glycol over basic zeolites. Applied Catalysis A: General, 178(2), 159-166.
[8] El-Toufaili, F.-A., Ahmadniana, F., Dinse, A., Feix, G. and Reichert, K.-H. (2006) Studies on hydrotalcite-catalyzed synthesis of poly(ethylene terephthalate). Macromolecular Materials and Engineering, 291(pt 4), 11361143.
[9] Serio, M.D., Tesser, R., Ferrara, A. and Santacesaria, E. (2004) Heterogeneous basic catalysts for the transesterification and the polycondensation reactions in PET production from DMT. Journal of Molecular Catalysis A: Chemical, 212(1-2), 251-257.
[10] Falini, Foresti, G.E., Lesci, G. and Roveri, N. (2002) Structural and morphological characterization of synthetic chrysotile single crystals. Chemical Communications, (14), 1512-1513.
[11] Habaue, S., Hirasa, T., Akagi, Y., Yamashita, K. and Kajiwara, M. (2006) Synthesis and property of silicone polymer from chrysotile asbestos by acid-leaching and silylation. Journal of Inorganic and Organometallic Polymers and Materials, 16(2), 155-160.
[12] Habaue, S., Sato, K., Yamashita, K., Shimamura, T., Kaito, M., Masuda, T. and Kajiwara, M. (2008) Polysiloxanes derived from chrysotile asbestos via acid-leaching and silylation processes, Journal of Applied Polymer Science, 110(5), 2891-2897.
[13] Gruner, J.W. (1948) Progress in silicate structures. The American Mineralogist, 33(9-10), 679-691.
[14] Brindley, G.W. and Zussman, J. (1957) A structural study of the thermal transformation of serpentine minerals to forsterite. The American Mineralogist, 42(8), 461-474.
[15] Arai, Y. and Nagai, S. (1963) Chemical Utilization of Serpentine. Chemistry and Chemical Industry, 16(1), 5968.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.