Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles

Abstract

Squamous cell carcinoma (SCC) and melanoma are malignant human cancers of the skin with an annual mortality that exceeds 10,000 cases every year in the USA alone. In this study, the lysosomal protein saposin C (SapC) and the phospholipid dioloylphosphatidylserine (DOPS) were assembled into cancer-selective nanovesicles (SapC-DOPS) and successfully tested using several in vitro and in vivo skin cancer models. Using MTT assay that measures the percentage of cell death, SapC-DOPS cytotoxic effect on three skin tumor cell lines (squamous cell carcinoma, SK-MEL-28, and MeWo) was compared to two normal nontumorigenic skin cells lines, normal immortalized keratinocyte (NIK) and human fibroblast cell (HFC). We observed that the nanovesicles selectively killed the skin cancer cells by inducing apoptotic cell death whereas untransformed skin cancer cells remained unaffected. Using subcutaneous skin tumor xenografts, animals treated with SapC-DOPS by subcutaneous injection showed a 79.4% by volume tumor reduced compared to the control after 4 days of treatment. We observed that the nanovesicles killed skin cancer cells by inducing apoptotic cell death compared to the control as revealed by TUNEL staining of xenograft tumor sections.

Share and Cite:

S. Abu-Baker, Z. Chu, A. Stevens, J. Li and X. Qi, "Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles," Journal of Cancer Therapy, Vol. 3 No. 4, 2012, pp. 321-326. doi: 10.4236/jct.2012.34041.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. J. Salasche, “Epidemiology of Actinic Keratoses and Squamous Cell Carcinoma,” Journal of the American Academy of Dermatology, Vol. 42, No. 1, 2000, pp. 4-7.
[2] E. J. Lentsch and J. N. Myers, “Melanoma of the Head and Neck: Current Concepts in Diagnosis and Management,” Laryngoscope, Vol. 111, No. 7, 2001, pp. 1209-1222. doi:10.1097/00005537-200107000-00014
[3] K. Sandhoff, T. Kolter and K. Harzer, “Sphingolipid Activator Proteins,” In: C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle, Eds., The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, Inc., New York, 2000, pp. 3371-3388.
[4] X. Qi, T. Leonova and G. A. Grabowski, “Functional Human Saposins Expressed in Escherichia Coli. Evidence for Binding and Activation Properties of Saposins C with Acid Beta-Glucosidase,” The Journal of Biological Chemistry, Vol. 269, No. 24, 1994, pp. 16746-16753.
[5] K. Harzer, B. C. Paton, H. Christomanou, M. Chatelut, T. Levade, M. Hiraiwa and J. S. O’Brien, “Saposins (Sap) A and C Activate the Degradation of Galactosylceramide in Living Cells,” FEBS Letters, Vol. 417, No. 3, 1997, pp. 270-274. doi:10.1016/S0014-5793(97)01302-1
[6] T. Linke, G. Wilkening, S. Lansmann, H. Moczall, O. Bartelsen, J. Weisgerber and K. Sandhoff, “Stimulation of Acid Sphingomyelinase Activity by Lysosomal Lipids and Sphingolipid Activator Proteins,” The Journal of Biological Chemistry, Vol. 382, No. 2, 2001, pp. 283-290. doi:10.1515/BC.2001.035
[7] S. Morimoto, Y. Yamamoto, J. S. O’Brien and Y. Kishimoto, “Distribution of Saposin Proteins (Sphingolipid Activator Proteins) in Lysosomal Storage and Other Diseases,” Proceedings of the National Academy Sciences of the United States of America, Vol. 87, No. 9, 1990, pp 3493-3497. doi:10.1073/pnas.87.9.3493
[8] X. Qi and G. A.Grabowski, “Differential Membrane Interactions of Saposins A and C: Implications for the Functional Specificity,” The Journal of Biological Chemistry, Vol. 276, No. 29, 2001, pp. 27010-27017. doi:10.1074/jbc.M101075200
[9] A. M. Vaccaro, M. Tatti, F. Ciaffoni, R. Salvioli, A. Serafino and A. Barca, “Saposin C Induces pH-Dependent Destabilization and Fusion of Phosphatidylserine-Containing Vesicles,” FEBS Letters, Vol. 349, No. 2, 1994, pp. 181-186. doi:10.1016/0014-5793(94)00659-8
[10] H. X. You, X. Qi, G. A. Grabowski and L.Yu, “Phospholipid Membrane Interactions of Saposin C: In Situ Atomic Force Microscopic Study,” Biophysical Journal, Vol. 84, No. 3, 2003, pp. 2043-2057. doi:10.1016/S0006-3495(03)75012-7
[11] Y. Wang, G. A. Grabowski and X. Qi, “Phospholipid Vesicle Fusion Induced by Saposin C,” Arch Biochem Biophys, Vol. 415, No. 1, 2003, pp. 43-53. doi:10.1016/S0003-9861(03)00219-4
[12] H. X. You, L. Yu and X. Qi, “Phospholipid Membrane Restructuring Induced by Saposin C: A Topographic Study Using Atomic Force Microscopy,” FEBS Letters, Vol. 503, No. 1, 2001, pp. 97-102. doi:10.1016/S0014-5793(01)02700-4
[13] M. Hiraiwa, S. Soeda, Y. Kishimoto and J. S. O’Brien, “Binding and Transport of Gangliosides by Prosaposin,” Proceedings of the National Academy Sciences of the United States of America, Vol. 89, No. 23, 1992, pp. 11254-11258. doi:10.1073/pnas.89.23.11254
[14] X. Qi, W. Qin, Y. Sun, K. Kondoh and G. A. Grabowski, “Functional Organization of Saposin C. Definition of the Neurotrophic and Acid Beta-Glucosidase Activation Regions,” The Journal of Biological Chemistry, Vol. 271, No. 12, 1996, pp. 6874-6880.
[15] S. Ran and P. E. Thorpe, “Phosphatidylserine Is a Marker of Tumor Vasculature and a potential target for Cancer Imaging and Therapy,” International Journal of Radiation Oncology, Vol. 54, No. 5, 2002, pp. 1479-1484. doi:10.1016/S0360-3016(02)03928-7
[16] T. Utsugi, A. J. Schroit, J. Connor, C. D. Bucana and I. J. Fidler, “Elevated Expression of Phosphatidylserine in the Outer Membrane Leaflet of Human Tumor Cells and Recognition by Activated Human Blood Monocytes,” Cancer Research, Vol. 51, No. 11, 1991, pp. 3062-3066.
[17] P. Vaupel, F. Kallinowski and P. Okunieff, “Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review,” Cancer Research, Vol. 49, No. 23, 1989, pp. 6449-6465.
[18] J. L. Wike-Hooley, J. Haveman and H. S. Reinhold, “The Relevance of Tumour pH to the Treatment of Malignant Disease,” Radiotherapy and Oncology, Vol. 2, No. 4, 1984, pp. 343-366. doi:10.1016/S0167-8140(84)80077-8
[19] D. F. Wallach, “Generalized Membrane Defects in Cancer,” The New England Journal of Medicine, Vol. 280, No. 14, 1969, pp. 761-767. doi:10.1056/NEJM196904032801406
[20] D. F. Wallach, “Cellular Membrane Alterations in Neoplasia: A Review and a Unifying Hypothesis,” Current Topics in Microbiology and Immunology, Vol. 47, No. 1969, pp. 152-176.
[21] D. F. Wallach, “Membrane Biology and Cancer Therapy,” Pathobiology Annual, Vol. 8, No. 1978, pp. 189- 216.
[22] A. C. Allison, “Lysosomes in Cancer Cells,” Journal of Clinical Pathology. Supplement, Vol. 7, 1974, pp. 43-50.
[23] M. J. Boyer and I. F. Tannock, “Lysosomes, Lysosomal Enzymes, and Cancer,” Advances in Cancer Research, Vol. 60, 1993, pp. 269-291.
[24] X. Qi, Z. Chu, Y. Y. Mahller, K. F. Stringer, D. P. Witte, and T. P. Cripe, “Cancer-Selective Targeting and Cytotoxicity by Liposomal-Coupled Lysosomal Saposin C Protein,” Clinical Cancer Research, Vol. 15, No. 18, 2009, pp. 5840-5851. doi:10.1158/1078-0432.CCR-08-3285
[25] V. Kaimal, Z. Chu and Y. Y. Mahller, B. Papahadjopoulos-Sternberg, T. P. Cripe, S. K. Holland and X. Qi, “Saposin C Coupled Lipid Nanovesicles Enable Cancer-Selective Optical and Magnetic Resonance Imaging,” Molecular Imaging and Biology, Vol. 13, No. 5, 2011, pp. 886-897. doi:10.1007/s11307-010-0417-7
[26] F. T. Lee, A. Rigopoulos, C. Hall, K. Clarke, S. H. Cody, F. E. Smyth, Z. Liu, M. W. Brechbiel, N. Hanai, E. C. Nice, B.Catimel, A. W. Burgess, S. Welt, G. Ritter, L. J. Old and A. M. Scott, “Specific Localization, Gamma Camera Imaging, and Intracellular Trafficking of Radiolabelled Chimeric Anti-G(D3) Ganglioside Monoclonal Antibody KM871 in SK-MEL-28 Melanoma Xenografts,” Cancer Research, Vol. 61, No. 11, 2001, pp. 4474-4482.
[27] C. V. Hamby, R. Abbi, N. Prasad, C. Stauffer, J. Thomson, C. E. Mendola, V. Sidorov and J. M. Backer, “Expression of a Catalytically Inactive H118Y Mutant of nm23-H2 Suppresses the Metastatic Potential of Line IV Cl 1 Human Melanoma Cells, International Journal of Cancer, Vol. 88, No. 4, 2000, pp. 547-553.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.