Astrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis

Abstract

Glutathione (GSH), a major cellular antioxidant protects cells against oxidative stress injury. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2) is a redox sensitive master regulator of battery of antioxidant enzymes including those involved in GSH antioxidant machinery. Earlier we reported that ethanol (ETOH) elicits apoptotic death of pri-mary cortical neurons (PCNs) which in partly due to depletion of intracellular GSH levels. Further a recent report from our laboratory illustrated that ETOH exacerbated the dysregulation of GSH and caspase mediated cell death of pure cortical neurons that are compromised in Nrf2 machinery (Narasimhan et al., 2011). In various experimental models of neurodegeneration, neuronal antioxidant defenses mainly GSH has been shown to be supported by astrocytes. We therefore sought to determine whether astrocytes can render protection to neurons against ETOH toxicity, particularly when the function of Nrf2 is compromised in neurons. The experimental model consisted of co-culturing PCAs with Nrf2 downregulated PCNs that were exposed with and without 4 mg/mL ETOH for 24 h. Monochlorobimane (MCB) staining followed by FACS analysis showed that astrocytes blocked ETOH induced GSH decrement in Nrf2-silenced neurons as opposed to exaggerated GSH depletion in Nrf2 downregulated PCNs alone. Similarly, the heightened activa-tion of caspase 3/7 observed in Nrf2-compromised neurons was attenuated when co-cultured with astrocytes as meas-ured by luminescence based caspase Glo assay. Furthermore, annexin-V-FITC staining followed by FACS analysis re-vealed that Nrf2 depleted neurons showed resistance to ETOH induced neuronal apoptosis when co-cultured with as-trocytes. Thus, the current study identifies ETOH induced dysregulation of GSH and associated apoptotic events ob-served in Nrf2-depleted neurons can be blocked by astrocytes. Further our results suggest that this neuroprotective ef-fect of astrocyte despite dysfunctional Nrf2 system in neurons could be compensated by astrocytic GSH supply.

Share and Cite:

M. Narasimhan, M. Rathinam, D. Patel, G. Henderson and L. Mahimainathan, "Astrocytes Prevent Ethanol Induced Apoptosis of Nrf2 Depleted Neurons by Maintaining GSH Homeostasis," Open Journal of Apoptosis, Vol. 1 No. 2, 2012, pp. 9-18. doi: 10.4236/ojapo.2012.12002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Dringen, “Metabolism and Functions of Glutathione in Brain,” Progress in neurobiology, Vol. 62, No. 6, 2000, pp. 649-671. doi:10.1016/S0301-0082(99)00060-X
[2] H. L. Martin and P. Teismann, “Glutathione—A Review on Its Role and Significance in Parkinson’s Disease,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, Vol. 23, No. 10, 2009, pp. 3263-3272.
[3] K. Aoyama, M. Watabe and T. Nakaki, “Regulation of Neuronal Glutathione Synthesis,” Journal of Pharmaco- logical Sciences, Vol. 108, No. 3, 2008, pp. 227-238. doi:10.1254/jphs.08R01CR
[4] M. Narasimhan, L. Mahimainathan, M. L. Rathinam, A. K. Riar and G. I. Henderson, “Overexpression of Nrf2 Protects Cerebral Cortical Neurons from Ethanol-Induced Apoptotic Death,” Molecular Pharmacology, Vol. 80, No. 6, 2011, pp. 988-999. doi:10.1124/mol.111.073262
[5] L. T. Watts, M. L. Rathinam, S. Schenker and G. I. Hen- derson, “Astrocytes Protect Neurons from Ethanol-Induced Oxidative Stress and Apoptotic Death,” Journal of Neu- roscience Research, Vol. 80, No. 5, 2005, pp. 655-666. doi:10.1002/jnr.20502
[6] R. Dringen, B. Pfeiffer and B. Hamprecht, “Synthesis of the Antioxidant Glutathione in Neurons: Supply by As- trocytes of CysGly as Precursor for Neuronal Gluta- thione,” The Journal of Neuroscience: The Official Jour- nal of the Society for Neuroscience, Vol. 19, No. 2, 1999, pp. 562-569.
[7] Y. J. Surh, J. K. Kundu and H. K. Na, “Nrf2 as a Master Redox Switch in Turning on the Cellular Signaling In- volved in the Induction of Cytoprotective Genes by Some Chemopreventive Phytochemicals,” Planta Medica, Vol. 74, No. 13, 2008, pp. 1526-1539. doi:10.1055/s-0028-1088302
[8] T. Satoh, S. I. Okamoto, J. Cui, Y. Watanabe, K. Furuta, M. Suzuki, K. Tohyama and S. A. Lipton, “Activation of the Keap1/Nrf2 Pathway for Neuroprotection by Elec- trophilic [Correction of Electrophillic] Phase II Inducers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 3, 2006, pp. 768- 773. doi:10.1073/pnas.0505723102
[9] M. R. Vargas, M. Pehar, P. Cassina, L. Martinez-Palma, J. A. Thompson, J. S. Beckman and L. Barbeito, “Fibroblast Growth Factor-1 Induces Heme Oxygenase-1 via Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Spinal Cord Astrocytes: Consequences for Motor Neuron Survival,” The Journal of Biological Chemistry, Vol. 280, No. 27, 2005, pp. 25571-25579. doi:10.1074/jbc.M501920200
[10] M. J. Calkins, R. J. Jakel, D. A. Johnson, K. Chan, Y. W. Kan and J. A. Johnson, “Protection from Mitochondrial Complex II Inhibition in Vitro and in Vivo by Nrf2- Mediated Transcription,” Proceedings of the National Aca- demy of Sciences of the United States of America, Vol. 102, No. 1, 2005, pp. 244-249. doi:10.1073/pnas.0408487101
[11] A. Y. Shih, S. Imbeault, V. Barakauskas, H. Erb, L. Jiang, P. Li and T. H. Murphy, “Induction of the Nrf2-Driven Antioxidant Response Confers Neuroprotection during Mitochondrial Stress in Vivo,” The Journal of Biological Chemistry, Vol. 280, No. 24, 2005, pp. 22925-22936. doi:10.1074/jbc.M414635200
[12] A. Bignami, “Glial Cells in Central Nervous System,” In: P. J. Magistretti, Ed., Discussions in Neuroscience, El- sevier, Amsterdam, 1991, pp. 1-45.
[13] H. K. Kimelberg and M. D. Norenberg, “Astrocytes,” Scientific American, Vol. 260, No. 4, 1989, pp. 66-76. doi:10.1038/scientificamerican0489-66
[14] J. O’kusky and M. Colonnier, “A Laminar Analysis of the Number of Neurons, Glia, and Synapses in the Adult Cortex (Area 17) of Adult Macaque Monkeys,” The Journal of Comparative Neurology, Vol. 210, No. 3, 1982, pp. 278-290. doi:10.1002/cne.902100307
[15] M. Pekny and M. Nilsson, “Astrocyte Activation and Reactive Gliosis,” Glia, Vol. 50, No. 4, 2005, pp. 427-434. doi:10.1002/glia.20207
[16] C. E. Schmidt and J. B. Leach, “Neural Tissue Engineer- ing: Strategies for Repair and Regeneration,” Annual Re- view of Biomedical Engineering, Vol. 5, 2003, pp. 293- 347.
[17] M. V. Sofroniew and H. V. Vinters, “Astrocytes: Biology and Pathology,” Acta Neuropathologica, Vol. 119, No. 1, 2010, pp. 7-35. doi:10.1007/s00401-009-0619-8
[18] D. A. Johnson, G. K. Andrews, W. Xu and J. A. Johnson, “Activation of the Antioxidant Response Element in Pri- mary Cortical Neuronal Cultures Derived from Trans- genic Reporter Mice,” Journal of Neurochemistry, Vol. 81, No. 6, 2002, pp. 1233-1241. doi:10.1046/j.1471-4159.2002.00913.x
[19] T. H. Murphy, J. Yu, R. Ng, D. A. Johnson, H. Shen, C. R. Honey and J. A. Johnson, “Preferential Expression of Antioxidant Response Element Mediated Gene Expres- sion in Astrocytes,” Journal of Neurochemistry, Vol. 76, No. 6, 2001, pp. 1670-1678. doi:10.1046/j.1471-4159.2001.00157.x
[20] J. B. Schulz, J. Lindenau, J. Seyfried and J. Dichgans, “Glutathione, Oxidative Stress and Neurodegeneration,” European Journal of Biochemistry/FEBS, Vol. 267, No. 16, 2000, pp. 4904-4911.
[21] A. Y. Shih, D. A. Johnson, G. Wong, A. D. Kraft, L. Jiang, H. Erb, J. A. Johnson and T. H. Murphy, “Coordi- nate Regulation of Glutathione Biosynthesis and Release by Nrf2-Expressing Glia Potently Protects Neurons from Oxidative Stress,” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, Vol. 23, No. 8, 2003, pp. 3394-3406.
[22] X. F. Wang and M. S. Cynader, “Astrocytes Provide Cysteine to Neurons by Releasing Glutathione,” Journal of Neurochemistry, Vol. 74, No. 4, 2000, pp. 1434-1442. doi:10.1046/j.1471-4159.2000.0741434.x
[23] M. L. Rathinam, L. T. Watts, A. A. Stark, L. Mahi- mainathan, J. Stewart, S. Schenker and G. I. Henderson, “Astrocyte Control of Fetal Cortical Neuron Glutathione Homeostasis: Up-Regulation by Ethanol,” Journal of Neu- rochemistry, Vol. 96, No. 5, 2006, pp. 1289-1300. doi:10.1111/j.1471-4159.2006.03674.x
[24] E. D. Martin, A. Araque and W. Buno, “Synaptic Regula- tion of the Slow Ca2+-Activated K+ Current in Hippo- campal CA1 Pyramidal Neurons: Implication in Epileptogenesis,” Journal of Neurophysiology, Vol. 86, No. 6, 2001, pp. 2878-2886.
[25] K. V. Rao, K. S. Panickar, A. R. Jayakumar and M. D. Norenberg, “Astrocytes Protect Neurons from Ammonia Toxicity,” Neurochemical Research, Vol. 30, No. 10, 2005, pp. 1311-1318. doi:10.1007/s11064-005-8803-2
[26] D. R. Brown, “Neurons Depend on Astrocytes in a Co- culture System for Protection from Glutamate Toxicity,” Molecular and Cellular Neurosciences, Vol. 13, No. 5, 1999, pp. 379-389. doi:10.1006/mcne.1999.0751
[27] L. F. Romao, O. Sousa Vde, V. M. Neto and F. C. Gomes, “Glutamate Activates GFAP Gene Promoter from Cul- tured Astrocytes through TGF-Beta1 Pathways,” Journal of Neurochemistry, Vol. 106, No. 2, 2008, pp. 746-756. doi:10.1111/j.1471-4159.2008.05428.x
[28] V. Ramachandran, L. T. Watts, S. K. Maffi, J. Chen, S. Schenker and G. Henderson, “Ethanol-Induced Oxidative Stress Precedes Mitochondrially Mediated Apoptotic Death of Cultured Fetal Cortical Neurons,” Journal of Neuro- science Research, Vol. 74, No. 4, 2003, pp. 577-588. doi:10.1002/jnr.10767
[29] M. Narasimhan, M. Rathinam, A. Riar, D. Patel, S. Mummidi, H. S. Yang, N. H. Colburn, G. I. Henderson and L. Mahimainathan, “Programmed Cell Death 4 (PD- CD4): A Novel Player in Ethanol-Mediated Suppression of Protein Translation in Primary Cortical Neurons and Developing Cerebral Cortex,” Alcoholism, Clinical and Experimental Research, 2012.
[30] J. W. Olney, T. Tenkova, K. Dikranian, Y. Q. Qin, J. Labruyere and C. Ikonomidou, “Ethanol-Induced Apop- totic Neurodegeneration in the Developing C57BL/6 Mouse Brain,” Developmental Brain Research, Vol. 133, No. 2, 2002, pp. 115-126. doi:10.1016/S0165-3806(02)00279-1
[31] K. D. Mccarthy and J. De Vellis, “Preparation of Separate Astroglial and Oligodendroglial Cell Cultures from Rat Cerebral Tissue,” The Journal of Cell Biology, Vol. 85, No. 3, 1980, pp. 890-902. doi:10.1083/jcb.85.3.890
[32] S. K. Maffi, M. L. Rathinam, P. P. Cherian, W. Pate, R. Hamby-Mason, S. Schenker and G. I. Henderson, “Glu- tathione Content as a Potential Mediator of the Vulnerability of Cultured Fetal Cortical Neurons to Ethanol-In- duced Apoptosis,” Journal of Neuroscience Research, Vol. 86, No. 5, 2008, pp. 1064-1076. doi:10.1002/jnr.21562
[33] R. Dringen, L. Kussmaul, J. M. Gutterer, J. Hirrlinger and B. Hamprecht, “The Glutathione System of Peroxide De- toxification Is Less Efficient in Neurons than in Astro- glial Cells,” Journal of Neurochemistry, Vol. 72, No. 6, 1999, pp. 2523-2530. doi:10.1046/j.1471-4159.1999.0722523.x
[34] M. L. Schroeter, K. Mertsch, H. Giese, S. Muller, A. Sporbert, B. Hickel and I. E. Blasig, “Astrocytes Enhance Radical Defence in Capillary Endothelial Cells Consti- tuting the Blood-Brain Barrier,” FEBS Letters, Vol. 449, No. 2-3, 1999, pp. 241-244. doi:10.1016/S0014-5793(99)00451-2
[35] P. C. Chen, M. R. Vargas, A. K. Pani, R. J. Smeyne, D. A. Johnson, Y. W. Kan and J. A. Johnson, “Nrf2-Mediated Neuroprotection in the MPTP Mouse Model of Parkin- son’s Disease: Critical Role for the Astrocyte,” Pro- ceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 8, 2009, pp. 2933-2938. doi:10.1073/pnas.0813361106
[36] S. J. Heales and J. P. Bolanos, “Impairment of Brain Mi- tochondrial Function by Reactive Nitrogen Species: The Role of Glutathione in Dictating Susceptibility,” Neuro- chemistry International, Vol. 40, No. 6, 2002, pp. 469-474. doi:10.1016/S0197-0186(01)00117-6
[37] J. Hirrlinger, J. B. Schulz and R. Dringen, “Glutathione Release from Cultured Brain Cells: Multidrug Resistance Protein 1 Mediates the Release of GSH from Rat Astro- glial Cells,” Journal of Neuroscience Research, Vol. 69, No. 3, 2002, pp. 318-326. doi:10.1002/jnr.10308
[38] K. A. Jellinger and C. H. Stadelmann, “The Enigma of Cell Death in Neurodegenerative Disorders,” Journal of Neural Transmission, No. 60, 2000, pp. 21-36.
[39] S. Kothakota, T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T. J. Mcgarry, M. W. Kirschner, K. Koths, D. J. Kwiatkowski and L. T. Williams, “Caspase-3-Generated Fragment of Gelsolin: Effector of Morphological Change in Apoptosis,” Science, Vol. 278, No. 5336, 1997, pp. 294-298. doi:10.1126/science.278.5336.294
[40] J. G. Walsh, S. P. Cullen, C. Sheridan, A. U. Luthi, C. Gerner and S. J. Martin, “Executioner Caspase-3 and Caspase-7 Are Functionally Distinct Proteases,” Proceed- ings of the National Academy of Sciences of the United States of America, Vol. 105, No. 35, 2008, pp. 12815- 12819. doi:10.1073/pnas.0707715105
[41] M. C. Kowalczyk, Z. Walaszek, P. Kowalczyk, T. Kinjo, M. Hanausek and T. J. Slaga, “Differential Effects of Several Phytochemicals and Their Derivatives on Murine Keratinocytes in Vitro and in Vivo: Implications for Skin Cancer Prevention,” Carcinogenesis, Vol. 30, No. 6, 2009, pp. 1008-1015. doi:10.1093/carcin/bgp069
[42] K. Kumagai, S. Imai, F. Toyoda, N. Okumura, E. Isoya, H. Matsuura and Y. Matsusue, “17β-Oestradiol Inhibits Doxorubicin-Induced Apoptosis via Block of the Vol- ume-Sensitive Cl? Current in Rabbit Articular Chondro- cytes,” British Journal of Pharmacology, Vol. 166, No. 2, 2012, pp. 702-720. doi:10.1111/j.1476-5381.2011.01802.x
[43] R. Franco, M. I. Panayiotidis and J. A. Cidlowski, “Glutathione Depletion Is Necessary for Apoptosis in Lymphoid Cells Independent of Reactive Oxygen Species Formation,” The Journal of Biological Chemistry, Vol. 282, No. 42, 2007, pp. 30452-30465. doi:10.1074/jbc.M703091200
[44] H. G. Lee, Y. J. Lee and J. H. Yang, “Perfluorooctane Sulfonate Induces Apoptosis of Cerebellar Granule Cells via a ROS-Dependent Protein Kinase C Signaling Pathway,” Neurotoxicology, Vol. 33, No. 3, 2012, pp. 314- 320. doi:10.1016/j.neuro.2012.01.017
[45] K. Sathishkumar, X. Xi, R. Martin and R. M. Uppu, “Cholesterol Secoaldehyde, an Ozonation Product of Cholesterol, Induces Amyloid Aggregation and Apoptosis in Murine GT1-7 Hypothalamic Neurons,” Journal of Alzheimer’s Disease: JAD, Vol. 11, No. 3, 2007, pp. 261- 274.
[46] A. D. Kraft, D. A. Johnson and J. A. Johnson, “Nuclear Factor E2-Related Factor 2-Dependent Antioxidant Response Element Activation by Tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons Against Oxidative Insult,” The Jour- nal of Neuroscience: The Official Journal of the Society for Neuroscience, Vol. 24, No. 5, 2004, pp. 1101-1112.
[47] K. H. Kim, J. Y. Jeong, Y. J. Surh and K. W. Kim, “Expression of Stress-Response ATF3 Is Mediated by Nrf2 in Astrocytes,” Nucleic Acids Research, Vol. 38, No. 1, 2010, pp. 48-59. doi:10.1093/nar/gkp865
[48] B. P. Chen, G. Liang, J. Whelan and T. Hai, “ATF3 and ATF3 Delta Zip. Transcriptional Repression versus Acti- vation by Alternatively Spliced Isoforms,” The Journal of Biological Chemistry, Vol. 269, No. 22, 1994, pp. 15819- 15826.
[49] T. Hai, C. D. Wolfgang, D. K. Marsee, A. E. Allen and U. Sivaprasad, “ATF3 and Stress Responses,” Gene Expression, Vol. 7, No. 4-6, 1999, pp. 321-335.
[50] G. Liang, C. D. Wolfgang, B. P. Chen, T. H. Chen and T. Hai, “ATF3 Gene. Genomic Organization, Promoter, and Regulation,” The Journal of Biological Chemistry, Vol. 271, No. 3, 1996, pp. 1695-1701.
[51] S. Nakagomi, Y. Suzuki, K. Namikawa, S. Kiryu-Seo and H. Kiyama, “Expression of the Activating Transcription Factor 3 Prevents c-Jun N-Terminal Kinase-Induced Neuronal Death by Promoting Heat Shock Protein 27 Expression and Akt Activation,” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, Vol. 23, No. 12, 2003, pp. 5187-5196.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.