Correlation of prefrontal activity measured by near-infrared spectroscopy (NIRS) with mood, BDNF genotype and serum BDNF level in healthy individuals

Abstract

Depression has been known to reduce the prefrontal activity associated with the execution of certain cognitive tasks, although whether a temporarily depressed or anxious mood in healthy individuals affects the prefrontal blood oxygen level during cognitive tasks is unknown. Combining the measurement of prefrontal activity with near-infrared spectroscopy (NIRS) and the two cognitive tasks, namely the letter version of the verbal fluency test (VFT-l) and the Stroop test, we measured the effect of a depressed or anxious mood and gender on the changes in the prefrontal oxygenated hemoglobin (Oxy-Hb) levels during those cognitive tests in healthy individuals. Depressed mood or anxious mood was assessed by the Hospital Anxiety and Depression Scale (HADS). Thereby we aimed to explore the possibility of NIRS measurement for detecting the early subclinical manifestation of major depression. Moreover, we examined the possible relationships between prefrontal activation and the functional Val66Met polymorphisms of the brain derived neurotropic factor (BDNF) gene and serum BDNF level. As a result, the increased prefrontal Oxy-Hb levels during cognitive tasks were significantly correlated with the severity of depressed mood in males. The course of the prefrontal Oxy-Hb increase was different depending on the cognitive tasks, i.e., the VFT-l or the Stroop test, in both genders. Correlations of BDNF genotype and serum BDNF level with the prefrontal Oxy-Hb levels during those cognitive tasks were negative. Our results suggest that the early subclinical manifestation of depressed mood in males might be detected by the NIRS measurement, which is not correlated with the individual properties of BDNF.

Share and Cite:

Matsuzawa, D. , Takeda, K. , Ohtsuka, H. , Takasugi, J. , Watanabe, T. , Maeda, J. , Nagakubo, S. , Sutoh, C. , Shimoyama, I. , Nakazawa, K. and Shimizu, E. (2012) Correlation of prefrontal activity measured by near-infrared spectroscopy (NIRS) with mood, BDNF genotype and serum BDNF level in healthy individuals. Open Journal of Psychiatry, 2, 194-203. doi: 10.4236/ojpsych.2012.23025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Adler, D.A., McLaughlin, T.J., Rogers, W.H., Chang, H., Lapitsky, L. and Lerner, D. (2006) Job performance deficits due to depression. American Journal of Psychiatry, 163, 1569-1576. doi:/10.1176/appi.ajp.163.9.1569
[2] Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R. and Walters, E.E. (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 593-602.
[3] Pignone, M.P., Gaynes, B.N., Rushton, J.L., Burchell, C. M., Orleans, C.T., Mulrow, C.D. and Lohr, K.N. (2002) Screening for depression in adults: A summary of the evidence for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 136, 765-776.
[4] Hammen, C., Kim, E.Y., Eberhart, N.K. and Brennan, P.A. (2009) Chronic and acute stress and the prediction of major depression in women. Depression and Anxiety, 26, 718-723. doi:/10.1002/da.20571
[5] Mazure, C. (1998) Life Stressors as risk factors in depression. Clinical Psychology: Science and Practice, 5, 291-313.
[6] Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y. and Koizumi, H. (1995) Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Medical Physics, 22, 1997-2005. doi:/10.1118/1.597496
[7] Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C. and Chute, D. (2007) Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. Clinical Neuropsychologist, 21, 9-37. doi:/10.1080/13854040600910018
[8] Herrmann, M.J., Ehlis, A.C. and Fallgatter, A.J. (2004) Bilaterally reduced frontal activation during a verbal fluency task in depressed patients as measured by near-infrared spectroscopy. Journal of Neuropsychiatry & Clinical Neurosciences, 16, 170-175. doi:/10.1176/appi.neuropsych.16.2.170,
[9] Kameyama, M., Fukuda, M., Yamagishi, Y., Sato, T., Uehara, T., Ito, M., Suto, T. and Mikuni, M. (2006) Frontal lobe function in bipolar disorder: A multichannel near-infrared spectroscopy study. Neuroimage, 29, 172-184. doi:/10.1016/j.neuroimage.2005.07.025
[10] Suto, T., Fukuda, M., Ito, M., Uehara, T. and Mikuni, M. (2004) Multichannel near-infrared spectroscopy in depression and schizophrenia: Cognitive brain activation study. Biological Psychiatry, 55, 501-511. doi:/10.1016/j.biopsych.2003.09.008
[11] Marcus, S.M., Young, E.A., Kerber, K.B., Kornstein, S., Farabaugh, A.H., Mitchell, J., Wisniewski, S.R., Bala-subramani, G.K., Trivedi, M.H. and Rush, A.J. (2005) Gender differences in depression: Findings from the STAR*D study. Journal of Affective Disorders, 87, 141-150. doi:/10.1016/j.jad.2004.09.008
[12] Binder, D.K. and Scharfman, H.E. (2004) Brain-derived neurotrophic factor. Growth Factors, 22, 123-131. doi:/10.1080/08977190410001723308
[13] Hariri, A.R., Goldberg, T.E., Mattay, V.S., Kolachana, B.S., Callicott, J.H., Egan, M.F. and Weinberger, D.R. (2003) Brain-derived neurotrophic factor val66met poly-morphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690-6694.
[14] Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. and Weinberger, D.R. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257-269. doi:/10.1016/S0092-8674(03)00035-7
[15] Dempster, E., Toulopoulou, T., McDonald, C., Bramon, E., Walshe, M., Filbey, F., Wickham, H., Sham, P.C., Murray, R.M. and Collier, D.A. (2005) Association between BDNF val66 met genotype and episodic memory. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 134B, 73-75. doi:/10.1002/ajmg.b.30150
[16] Rybakowski, J.K., Borkowska, A., Czerski, P.M., Skibinska, M. and Hauser, J. (2003) Polymorphism of the brain-derived neurotrophic factor gene and performance on a cognitive prefrontal test in bipolar patients. Bipolar Disorder, 5, 468-472. doi:/10.1046/j.1399-5618.2003.00071.x
[17] Karege, F., Bondolfi, G., Gervasoni, N., Schwald, M., Aubry, J.M. and Bertschy, G. (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological Psychiatry, 57, 1068-1072. doi:/10.1016/j.biopsych.2005.01.008
[18] Rybakowski, J.K., Borkowska, A., Skibinska, M. and Hauser, J. (2006) Illness-specific association of val66met BDNF polymorphism with performance on Wisconsin Card Sorting Test in bipolar mood disorder. Molecular Psychiatry, 11, 122-124. doi:/10.1038/sj.mp.4001765
[19] Gonul, A.S., Akdeniz, F., Taneli, F., Donat, O., Eker, C. and Vahip, S. (2005) Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. European Archives of Psychiatry and Clinical Neurosci- ence, 255, 381-386. doi:/10.1007/s00406-005-0578-6
[20] Shimizu, E., Hashimoto, K., Okamura, N., Koike, K., Komatsu, N., Kumakiri, C., Nakazato, M., Watanabe, H., Shinoda, N., Okada, S. and Iyo, M. (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry, 54, 70-75. doi:/10.1016/S0006-3223(03)00181-1
[21] Lang, U.E., Hellweg, R. and Gallinat, J. (2004) BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology, 29, 795-798. doi:/10.1038/sj.npp.1300382
[22] Zigmond, A.S. and Snaith, R.P. (1983) The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67, 361-370. doi:/10.1111/j.1600-0447.1983.tb09716.x
[23] Association, A.P. (1994) Diagnostic and statistical manual of mental disorders. 4th Edition, American Psychiatric Press, Washington DC.
[24] Watanabe, E., Maki, A., Kawaguchi, F., Takashiro, K., Yamashita, Y., Koizumi, H. and Mayanagi, Y. (1998) Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neuroscience Letters, 256, 49-52. doi:/10.1016/S0304-3940(98)00754-X
[25] MacLeod, C.M. (1991) Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163-203. doi:/10.1037/0033-2909.109.2.163
[26] Shimada, S. and Hiraki, K. (2006) Infant’s brain responses to live and televised action. Neuroimage, 32, 930-939. doi:/10.1016/j.neuroimage.2006.03.044
[27] Minagawa-Kawai, Y., Mori, K., Furuya, I., Hayashi, R. and Sato, Y. (2002) Assessing cerebral representations of short and long vowel categories by NIRS. Neuroreport, 13, 581-584.
[28] Shimoda, N., Takeda, K., Imai, I., Kaneko, J. and Kato, H. (2008) Cerebral laterality differences in handedness: A mental rotation study with NIRS. Neuroscience Letters, 430, 43-47. doi:/10.1016/j.neulet.2007.10.016
[29] Takeda, K., Gomi, Y., Imai, I., Shimoda, N., Hiwatari, M. and Kato, H. (2007) Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: A longitudinal study with near-infrared spectroscopy. Neuroscience Research, 59, 136-144. doi:/10.1016/j.neures.2007.06.1466,
[30] Itoh, K., Hashimoto, K., Kumakiri, C., Shimizu, E. and Iyo, M. (2004) Association between brain-derived neurotrophic factor 196 G/A polymorphism and personality traits in healthy subjects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 124B, 61-63. doi:/10.1002/ajmg.b.20078
[31] Kakimoto, Y., Nishimura, Y., Hara, N., Okada, M., Tanii, H. and Okazaki, Y. (2009) Intrasubject reproducibility of prefrontal cortex activities during a verbal fluency task over two repeated sessions using multi-channel near-infrared spectroscopy. Psychiatry and Clinical Neurosciences, 63, 491-499. doi:/10.1111/j.1440-1819.2009.01988.x
[32] Kono, T., Matsuo, K., Tsunashima, K., Kasai, K., Takizawa, R., Rogers, M.A., Yamasue, H., Yano, T., Taketani, Y. and Kato, N. (2007) Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men. Neuroscience Research, 57, 504-512. doi:/10.1016/j.neures.2006.12.007
[33] Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E. and Noll, D.C. (1997) A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5, 49-62. doi:/10.1006/nimg.1996.0247
[34] Fridriksson, J. and Morrow, L. (2005) Cortical activation and language task difficulty in aphasia. Aphasiology, 19, 239-250. doi:/10.1080/02687030444000714
[35] Drevets, W.C. (2000) Neuroimaging studies of mood disorders. Biological Psychiatry, 48, 813-829. doi:/10.1016/S0006-3223(00)01020-9
[36] Galynker, II, Cai, J., Ongseng, F., Finestone, H., Dutta, E. and Serseni, D. (1998) Hypofrontality and negative symptoms in major depressive disorder. Journal of Nuclear Medicine, 39, 608-612.
[37] Milak, M.S., Parsey, R.V., Keilp, J., Oquendo, M.A., Malone, K.M. and Mann, J.J. (2005) Neuroanatomic correlates of psychopathologic components of major depressive disorder. Archives of General Psychiatry, 62, 397-408. doi:/10.1001/archpsyc.62.4.397
[38] Kameyama, M., Fukuda, M., Uehara, T. and Mikuni, M. (2004) Sex and age dependencies of cerebral blood volume changes during cognitive activation: A multichannel near-infrared spectroscopy study. Neuroimage, 22, 1715-1721. doi:/10.1016/j.neuroimage.2004.03.050
[39] Herrmann, M.J., Walter, A., Ehlis, A.C. and Fallgatter, A.J. (2006) Cerebral oxygenation changes in the prefrontal cortex: Effects of age and gender. Neurobiology of Aging, 27, 888-894. doi:/10.1016/j.neurobiolaging.2005.04.013
[40] Ehlis, A.C., Herrmann, M.J., Wagener, A. and Fallgatter, A.J. (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biological Psychology, 69, 315-331. doi:/10.1016/j.biopsycho.2004.09.003
[41] Schroeter, M.L., Zysset, S., Kruggel, F. and Von Cramon, D.Y. (2003) Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage, 19, 555-564. doi:/10.1016/S1053-8119(03)00155-1
[42] Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y. and Soya, H. (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50, 1702-1710. doi:/10.1016/j.neuroimage.2009.12.023
[43] Kerns, J.G., Cohen, J.D., MacDonald, A.W., Johnson, M.K., Stenger, V.A., Aizenstein, H. and Carter, C.S. (2005) Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833-1839. doi:/10.1176/appi.ajp.162.10.1833
[44] Yucel, M., Pantelis, C., Stuart, G.W., Wood, S.J., Maruff, P., Velakoulis, D., Pipingas, A., Crowe, S.F., Tochon-Danguy, H.J. and Egan, G.F. (2002) Anterior cingulate activation during Stroop task performance: A PET to MRI coregistration study of individual patients with schizophrenia. American Journal of Psychiatry, 159, 251-254. doi:/10.1176/appi.ajp.159.2.251
[45] Gur, R.C., Gur, R.E., Obrist, W.D., Hungerbuhler, J.P., Younkin, D., Rosen, A.D., Skolnick, B.E. and Reivich, M. (1982) Sex and handedness differences in cerebral blood flow during rest and cognitive activity. Science, 217, 659-661. doi:/10.1126/science.7089587
[46] Rodriguez, G., Warkentin, S., Risberg, J. and Rosadini, G. (1988) Sex differences in regional cerebral blood flow. Journal of Cerebral Blood Flow & Metabolism, 8, 783-789. doi:/10.1038/jcbfm.1988.133
[47] Kansaku, K., Yamaura, A. and Kitazawa, S. (2000) Sex differences in lateralization revealed in the posterior language areas. Cerebral Cortex, 10, 866-872. doi:/10.1093/cercor/10.9.866
[48] Hariri, A.R., Goldberg, T.E., Mattay, V.S., Kolachana, B.S., Callicott, J.H., Egan, M.F. and Weinberger, D.R. (2003) Brain-derived neurotrophic factor val66met poly-morphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 6690-6694.
[49] Rybakowski, J.K., Borkowska, A., Skibinska, M. and Hauser, J. (2006) Illness-specific association of val66met BDNF polymorphism with performance on Wisconsin Card Sorting Test in bipolar mood disorder. Molecular Psychiatry, 11, 122-124. doi:/10.1038/sj.mp.4001765
[50] Shimizu, E., Hashimoto, K. and Iyo, M. (2004) Ethnic difference of the BDNF 196G/A (val66met) olymorphism frequencies: The possibility to explain ethnic mental traits. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 126B, 122-123. doi:/10.1002/ajmg.b.20118
[51] Takizawa, R., Tochigi, M., Kawakubo, Y., Marumo, K., Sasaki, T., Fukuda, M. and Kasai, K. (2009) Association between catechol-O-methyltrasferase Val108/158Met genotype and prefrontal hemodynamic response in schizophrenia. PLoS One, 4, e5495. doi:/10.1371/journal.pone.0005495

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.