Annealing Effects on Electrical Properties and Interfacial Reactions of Ni/Cu Schottky Rectifiers on n-Type InP

Abstract

We report on the effect of annealing temperature on electrical, interfacial reactions and surface morphological properties of Ni/Cu Schottky contacts on n-type InP. The extracted barrier height of as-deposited Ni/Cu Schottky contact is 0.59 eV (I-V) respectively. The high-quality Schottky contact with barrier height and ideality factor of 0.65 eV (I-V) and 1.15 respectively, can be obtained after annealing at 300℃ for 1 min in a nitrogen atmosphere. However, annealing at 400℃, results the decrease in the barrier height to 0.54 eV (I-V). From the above observations, it is observed that Ni/Cu Schottky contact exhibited excellent electrical properties after annealing at 300℃. Hence, the optimum annealing temperature for the Ni/Cu Schottky contact is 300℃. Furthermore, Cheung’s functions is used to extract the diode parameters including ideality factor, barrier height and series resistance. According to the XRD analysis, the formation of the indium phases at the Ni/Cu/n-InP interface could be the reason for the increase in the barrier height at annealing temperature 300℃. Further, the degradation of the barrier heights after annealing at 400℃ may be due to the formation of phosphide phases at the Ni/Cu/n-InP interface. Scanning electron microscopy (SEM) results show that the overall surface morphology of the Ni/Cu Schottky contact is reasonably smooth.

Share and Cite:

Y. Reddy, M. Nagaraj, S. Naik and V. Reddy, "Annealing Effects on Electrical Properties and Interfacial Reactions of Ni/Cu Schottky Rectifiers on n-Type InP," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 538-545. doi: 10.4236/jmp.2012.37074.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. W. Wilmsen, “Physics and Chemistry of III-V Compound Semiconductor Interfaces,” Plenum Press, New York, 1985.
[2] R. T. Tung, “Recent Advances in Schottky Barrier Concepts,” Material Science Engineering R, Vol. 35, No. 1-3, 2001, pp. 1-138. doi:10.1016/S0927-796X(01)00037-7
[3] D. L. Lile and D. A. Collins, “An Insulated-Gate Charge Transfer Device on InP,” Applied Physics Letters, Vol. 37, No. 6, 1980, pp. 552-553. doi:10.1063/1.91983
[4] L. J. Brillson and C. F. Brucker, “Fermi-Level Pinning and Chemical Structure of InP Metal Interface,” Journal of Vacuum Science and Technology, Vol. 21, No. 2, 1982, pp. 564-569. doi:10.1116/1.571764
[5] S. Uno, T. Hashizume, S. Kasai, N.-J. Wu and H. Hasegawa, “0.86 eV Platinum Schottky Barrier on Indium Phosphide by in-Situ Electrochemical Process and Its Application to MESFETs,” Japanese Journal of Physics, Vol. 35, 1996, pp. 1258-1263. doi:10.1143/JJAP.35.1258
[6] H.-I. Chen and Y.-I. Chou, “A Comparative Study of Hydrogen Sensing Performances between Electroless Plated and Thermal Evaporated Pd/InP Schottky Diodes,” Semiconductor Science and Technology, Vol. 18, No. 2, 2003, pp. 104-110. doi:10.1088/0268-1242/18/2/307
[7] W.-C. Huang and D.-R. Cai, “Formation and Characterization of Aluminum-Oxide by Stack-Layered Metal Structure Schottky Diode,” International Workshop on Junction Technology, 2006, pp. 295-298.
[8] H. Cetin and E. Ayyildiz, “Electrical Characteristics of Au, Al, Cu/n-InP Schottky Contacts Formed on Chemically Cleaned and Air-Exposed n-InP Surface,” Physica B: Condensed Matter, Vol. 394, No. 1, 2007, pp. 93-99. doi:10.1016/j.physb.2007.02.013
[9] O. Gullu, “Ultrahigh (100%) Barrier Modification of n-InP Schottky Diode by DNA Biopolymer Nanofilms,” Microelectronic Engineering, Vol. 87, No. 4, 2010, pp. 648-651. doi:10.1016/j.mee.2009.09.001
[10] N. Ucar, A. F. Ozdemir, D. A. Aldemir, S. Cakmak, A. Calik, H. Yildiz and F. Cimilli, “The Effect of Hydrostatic Pressure on the Electrical Characterization of Au/n- InP Schottky Diodes,” Superlattices and Microstructures, Vol. 47, No. 5, 2010, pp. 586-591. doi:10.1016/j.spmi.2010.02.003
[11] M. Bhaskar Reddy, V. Janardhanam, A. Ashok Kumar, V. Rajagopal Reddy and P. Narasimha Reddy, “Influence of Rapid Thermal Annealing on Electrical and Structural Properties of Double Metal Structure Au/Ni/n-InP (111) Diodes,” Current Applied Physics, Vol. 10, No. 2, 2010, pp. 687-692. doi:10.1016/j.cap.2009.09.001
[12] S. Sankar Naik, V. Rajagopal Reddy, C.-J. Choi and J.-S. Bae, “Electrical and Structural Properties of Double Metal Structure Ni/V Schottky Contacts on n-InP after Rapid Thermal Process,” Journal of Material Science, Vol. 46, No. 2, 2011, pp. 558-565. doi:10.1007/s10853-010-5020-4
[13] A. Ashok Kumar, V. Janardhanam and V. Rajagopal Reddy, “Electrical, Structural and Morphological Characteristics of Rapidly Annealed Pd/n-InP (100) Schottky Structure,” Journal of Martial Science: Material Electronics, Vol. 22, No. 7, 2011, pp. 854-861. doi:10.1007/s10854-010-0225-5
[14] S. Sankar Naik, V. Rajagopal Reddy, C.-J. Choi and J.-S. Bae, “Electrical and Structural Properties of Pd/V/n-Type InP Schottky Structure as a Function of Annealing Temperature,” Surface and Interface Analysis, Vol. 44, No. 1, 2012, pp. 98-104. doi:10.1002/sia.3778
[15] G. Myburg and F. D. Auret, “Influence of the Electron Beam Evaporation Rate of Pt and the Semiconductor Carrier Density of the Characteristics Pt/n-GaAs Schottky Contacts,” Journal of Applied Physics, Vol. 71, No. 12, 1992, pp. 6172-6176. doi:10.1063/1.350426
[16] E. H. Rhoderick and R. H. Williams, “Metal-Semicon- ductor Contacts,” 2nd Edition, Clarendon, Oxford, 1988.
[17] D. T. Quan and H. Hbib, “High Barrier Height Au/n-Type InP Schottky Contacts with a POxNyHz Interfacial Layer,” Solid State Electronics, Vol. 36, No. 3, 1993, pp. 339-344. doi:10.1016/0038-1101(93)90085-5
[18] S. K. Cheung and N. W. Cheung, “Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics,” Applied Physics Letters, Vol. 49, No. 2, 1986, pp. 85-87. doi:10.1063/1.97359
[19] H. Norde, “A Modified Forward I-V Plot for Schottky Diodes with High Series Resistance,” Journal of Applied Physics, Vol. 50, No. 7, 1979, pp. 5052-5053. doi:10.1063/1.325607
[20] W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su and P. Chye, “Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States,” Physical Review Letters, Vol. 44, No. 6, 1980, pp. 420-423. doi:10.1103/PhysRevLett.44.420
[21] T. S. Huang and R. S. Fang, “Barrier Height Enhancement of Pt/n-InP Schottky Diodes by P2S5/(NH4)2S Solution Treatment of the InP Surface,” Solid State Electronics, Vol. 37, No. 8, 1994, pp. 1461-1466. doi:10.1016/0038-1101(94)90152-X
[22] M. Andersson, “Ternary Phase Equilibria in the (Cr, Mo, W)-In-P Systems at 600?C,” Journal of Alloys and Compound, Vol. 198, No. 1-2, 1993, pp. L15-L18. doi:10.1016/0925-8388(93)90134-9
[23] D. G. Ivey, P. Jian and R. Bruce, “Reactions between Pd Thin Films and InP,” Journal of Electronic Materials, Vol. 21, No. 8, 1992, pp. 831-839. doi:10.1007/BF02665523
[24] V. Rajagopal Reddy and P. Koteswara Rao, “Annealing Temperature Effect on Electrical and Structural Properties of Cu/Au Schottky Contacts to n-Type GaN,” Microelectronic Engineering, Vol. 85, No. 2, 2008, pp. 470-476. doi:10.1016/j.mee.2007.08.006
[25] J. Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil and R. L. Aulombard, “Influence of Surface Defects on the Characteristics of GaN Schottky Diodes,” Material Research Society Symposium Proceedings, Vol. 449, 1996, pp. 1085-1090. doi:10.1557/PROC-449-1085
[26] R. Van de Walle, R. L. Van Meirhaeghe, W. H. Laflere and F. Cardon, “On the Relationship between Interfacial Defects and Schottky Barrier Height in Ag, Au, and Al/nGaAs Contacts,” Journal of Applied Physics, Vol. 74, No. 3, 1993, pp. 1885-1889. doi:10.1063/1.354797

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.