Pseudolite Applications in Positioning and Navigation: Pro-gress and Problems

Abstract

Global navigation satellite systems have been revolutionising surveying, geodesy, navigation and other position/location sensitive disciplines. However, there are two intrinsic shortcomings in such sat-ellite-based positioning systems: signal attenuation and dependence on the geometric distribution of the satellites. Consequently, the system performance can decrease significantly under some harsh observing conditions. To tackle this problem, some new concepts of positioning with the use of pseudo-satellites have been developed and tested. Pseudo-satellites, also called pseudolites, are ground-based transmitters that can be easily installed wherever they are needed. They therefore offer great flexibility in positioning and navigation applications. Although some initial experimental results are encouraging, there are still some challenging issues that need to be addressed. This paper reviews the historical pseudolite hardware developments and recent progress in pseudolite-based positioning, and discusses the current technical issues.

Share and Cite:

J. Wang, "Pseudolite Applications in Positioning and Navigation: Pro-gress and Problems," Positioning, Vol. 1 No. 3, 2002, pp. -.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Altmayer C., Martin S., & Theil S. (1998) Autonomous onboard orbit and attitude control of geostationary satellites using pseudolites, Pro-ceedings of US Institute of Navigation GPS-98, Nashville, TN, USA, 15-18 September, 1565-1574.
[2] Barltrop K.J., Stafford J.F. & Elrod B.D. (1996) Local DGPS with pseudolite augmentation and implementation considerations for LAAS, Proceedings of US Institute of Navigation GPS-96, Kansas City, Missouri, 17-20 Sept., 449-459.
[3] Barnes J., Wang J., Rizos C., & Tsujii T. (2002) The performance of a pseudolite-based positioning system for deformation monitoring. Pro-ceedings of the 2nd Symp. on Geodesy for Geotechnical & Structural Applications, Berlin, Germany, 21-24 May, 326-327.
[4] Bartone C. G. & Kiran S. (2001) Flight test results of an integrated wideband airport pseudolite for the local area augmentation system, Navigation, 48(1): 35-48.
[5] Beser J. & Parkinson B.W. (1982) The application of NAVSTAR differential GPS in the civilian community, Navigation, 29(2): 107-136.
[6] Biberger R.J., Hein G.W., Eissfeller B., Oehler V., Schueler T. (2001) Pseudolite signal creeping on conducting surfaces, Proceedings of US Institute of Navigation GPS-2001, Salt Lake City, Utah, 11-14 September, 1238-1244.
[7] Brown A.K. (1992) A GPS precision approach and landing system, Proceedings of US Institute of Navigation GPS-92, Albuquerque, New Mexico, 16-18 Sept., 373-381.
[8] Cobb H.S. (1997) GPS pseudolites: Theory, design, and applications, PhD Dissertation, Stanford University.
[9] Cohen C.E., Pervan B.S., Cobb, H.S., Lawrence D.G., Powell J.D. & & B.W. Parkinson (1993) Real time cycle ambiguity resolution using a pseudolite for precision landing of aircraft with GPS, The Second International Symposium on Differential Satellite Navigation Sys-tems DSNS’93, Amsterdam, The Netherlands, March 30-April 2, 171-178.
[10] Corazzini T. & How J.P. (1999) Onboard Pseudolite Augmentation System for Relative Navigation, Proceedings of US Institute of Navi-gation GPS-99, Nashville, TN, Sept. 1999, pp. 1559-1568
[11] Dai L., Wang J., Tsujii T., & Rizos C. (2001a) Pseudolite applications in positioning and navigation: Modelling and geometric analysis, Int. Symp. on Kinematic Systems in Geodesy, Geomatics & Navigation (KIS2001), Banff, Canada, 5-8 June, 482-489.
[12] Dai L., Wang J., Rizos C. & Han S. (2001b) Pseudo-satellites applications in deformation monitoring, GPS Solutions, 5(3), 80-87
[13] Dai L., Wang J., Tsujii T., & Rizos C. (2002) Inverted pseudolite positioning and its applications, Accepted for publication Survey Review.
[14] Dovis F., Kandus G., Magli E. & Olmo G. (2000) Integration of stratospheric platforms within the GNSS2 system, Proceedings of GNSS-2000, Edinburgh, U.K., 1-4 May. CD-ROM proc.
[15] Elrod B.D. & Van Dierendonck A.J. (1996) Pseudolites. In: B.W. Parkinson & J.J. Spilker (eds.), Global Positioning System: Theory and Applications (Vol. II), American Institute of Astronautics, Washington D.C., 51-79.
[16] Ford T., Neumann J., Toso N., Petersen W., Anderson C., Fenton P., Holden T. & Barltrop K. (1996) HAPPI – A high accuracy pseu-dolite/GPS positioning integration, Proceedings of US Institute of Navigation GPS-96, Kansas City, Missouri, 17-20 Sept., 1719-1728.
[17] Galijan R.C. and Lucha G.V. (1993) A suggested approach for augmenting GNSS Category III approaches and landings: the GPS/GLONASS and Glonass pseudolite system, Proceedings of US Institute of Navigation GPS-93, Salt Lake City, Utah, 22-24 Sep-tember, 157-160.
[18] Galijan R.C. (1996) Analysis and simulation of a candiate deployment geometry and characteristics of pseudolites with a tunnel, Pro-ceedings of US Institute of Navigation GPS-96, Kansas City, 17-20 September, 527-533.
[19] Grejner-Brzezinska D., Yi Y., Wang J. (2002) Design and navigation performance analysis of an experimental GPS/INS/PL system, 2nd Symp. on Geodesy for Geotechnical & Structural Applications, Berlin, Germany, 21-24 May, 452- 461.
[20] Harrington R.L. & Dolloff J.T. (1976) The inverted range: GPS user test facility, IEEE PLANS’76, San Diego, California, 1-3 Nov., 204-211.
[21] Hein G.W. (2002) Personal communications.
[22] Hein G.W., Eissfeller B., Werner W., Ott B., Elrod B.D., Barltrop K.J. & Stafford J.F. (1997) Practical investigation on DGPS for aircraft precision approaches augmented by pseudolite carrier phase tracking, Proceedings of US Institute of Navigation GPS-97, Kansas City, Missouri, 16-19 Sept., 1851-1860.
[23] Holden T. & Morely T. (1997) Pseudolite augmented DGPS for land applications, Proceedings of US Institute of Navigation GPS-97, Kansas City, Missouri, 16-19 Sept., 1397-1404.
[24] ITT (2002) 746th GPS Test Range, GPS World, February, http://www.gpsworld.com.
[25] Kalafus R.M., Van Dierendock A.J. & Pealer N. (1986) Special Committee 104 recommendations for differential GPS service. Global Positioning System (red book), The Institute of Navigation, Vol. I, 101-126.
[26] Kee C., Jun H., Yun D., Kim B., Kim Y., Parkinson B.W., Langestein T., Pullen S. & Lee J. (2000) Development of indoor navigation sys-tem using asynchronous pseudolites, US Institute of Navigation GPS-2000, Salt Lake City, Utah, 19-22 Sept, 1038-1045.
[27] Klein D. & Parkinson B.W. (1986) The use of pseudo-satellites for improving GPS performance, Global Positioning System (red book), Vol III, Institute of Navigation, 1986, 135-146.
[28] Lee H.Y., Wang J., & Rizos C. (2002) Kinematic positioning with an integrated GPS/pseudolite/INS, 2nd Symp. on Geodesy for Geotech-nical & Structural Applications, Berlin, Germany, 21-24 May, 314-325.
[29] LeMaster E.A. (2002) Self-Calibrating Pseudolite Arrays: Theory and Experiment, Ph.D. Thesis, Stanford University.
[30] LeMaster E. A. & Rock S. (1999) Mars exploration using self-calibrating pseudolite arrays, Proceedings of US Institute of Navigation GPS-99, Nashville, Tennessee, 14-17 Sept., 1549-1558.
[31] Madhani P.H., Axelrad P., Krumvieda K. Thomas J. (2001) Mitigation of the near-far problem by successive interference cancellation, Proceedings of US Institute of Navigation GPS-2001, Salt Lake City, Utah, 11-14 Sept, 148-154.
[32] Meng X., Roberts G.W., Dodson A.H., Cosser E., Noakes C. (2002) Simulation of the effects of introducing pseudolite data into bridge deflection monitoring data, Proceedings of 2nd Symp. on Geodesy for Geotechnical & Structural Applications, Berlin, Germany, 21-24 May, 372-381.
[33] Michalson M.R. & Progri .I.F. (2000) Assessing the accuracy of underground positioning using pseudolites, Proceedings of US Institute of Navigation GPS-2000, Salt Lake City, Utah, 19-22 Sept., 1007-1005.
[34] Morley T. & Lachapelle G. (1998) Pseudolite augmentation for OTF ambiguity resolution in shipborne mode, Journal of Surveying Engineer-ing, 124(1): 26-39.
[35] O’Keefe K., Sharma J., Cannon M.E. & Lachapelle G. (1999) Pseudolite-based inverted GPS concept for local area positioning, Proceedings of US Institute of Navigation GPS-99, Nashville, Tennessee, 14-17 Sept., 1523-1530.
[36] Rappaport T.S. & Sandhu S. (1994) Radio-wave propagation for emerging wireless personal-communication systems, IEEE Antennas and Propagation Magazine, 36(5):14-23.
[37] Raquet J., Lachapelle J., Qui W., Pelletier C., Nash A., Fenton P. & Holden T. (1995) Development and testing of a mobile pseudolite concept for precise positioning, Proceedings of US Institute of Navigation GPS-95, Palm Springs, California, 12-15 Sept., 817-825.
[38] Pachter M. & Mckay J.B. (1998) Geometry optimization of a GPS-based navigation reference system, Navigation, 44(4), 457-470.
[39] Pahlavan K., Krishnamurthy P. and Beneat J. (1998) Wideband radio propagation modelling for indoor geolocation applications, IEEE Coummunication Magazine, April, 60-65.
[40] Parkinson B.W. & Fitzgibbon K.T. (1986) Optimal locations of pseudolites for differential GPS, Navigation, 33(4), 259-283.
[41] Pervan B., Cohen C.E. & Parkinson B.W. (1994) Integrity monitoring for precision approach using kinematic GPS and a ground-based pseu-dolite, Navigation, 41(2), 159-174
[42] Peterson B.B., Kmiecik C.G., Nguyen H. & Kaspar B. (2000) Indoor geolocation system operational test results, Navigation, 47(3):157-166.
[43] Progri I.F. & Michalson W.R. (2001) An Alternative Approach to Multipath and Near-Far Problem for Indoor Geolocation Systems, Proceed-ings of US Institute of Navigation GPS-2001, Salt Lake City, Utah, 11-14 September 1434-1467
[44] Soderholm S., Juhola T., Saarnimo T., Karttunen V. (2001), Indoor navigation using a GPS receiver, Proceedings of US Institute of Naviga-tion GPS-2001, Salt Lake City, Utah, 11-14 September, 1479-1486
[45] Stansel T. A. Jr. (1986) RTCM SC-104 Recommended pseudolite signal specification, Global Positioning System, Vol. 3, The US Institute of Navigation, 1986, 117-134.
[46] Stone J.M., LeMaster E.A., Powell J.D. & Rock S. (1999) GPS Pseudolite Transceivers and Their Applications, Proceedings of US ION Na-tional Technical Meeting, San Diego, California, 25-27 January, 415-424.
[47] Tsujii T., Rizos C., Wang J., Dai L., Roberts C. & Harigae M. (2001) A navigation/positioning service based on pseudolites installed on stratospheric airships, 5th Int. Symp. on Satellite Navigation Technology & Applications, Canberra, Australia, 24-27 July, CD-ROM.
[48] Tuohino J.L., Farley M.G. & James R.R. (2000) Military pseudolite flight test results, Proceedings of US Institute of Navigation GPS-2000, 19-22 September, Salt Lake City, UT, 2079-2088.
[49] Van Dierendonck A.J., Elrod B.D. and Melton W.C. (1989) Improving the integrity, availability and accuracy of GPS using pseudolites, Pro-ceedings of NAV’89, London, UK, Oct 17-19, 1989, paper 32.
[50] Verhagen S. (2001) Ambiguity resolution and success rates with an integrated GNSS - pseudolite positioning system, Proceedings of US In-stitute of Navigation GPS 2001, Salt Lake City, Utah, 11-14 September 1436-1478.
[51] Verhagen S. (2002) Internal and external reliability of an integrated GNSS – pseudolite positioning system, Proceedings of 2nd Symp. on Ge-odesy for Geotechnical & Structural Applications, Berlin, Germany, 21-24 May, 314-325.
[52] Wang J. (2000) An approach to Glonass ambiguity resolution, Journal of Geodesy, 74(5), 421-430.
[53] Wang J., Rizos C., Stewart M.P., & Leick A. (2001a) GPS and Glonass integration: Modelling and ambiguity resolution issues, GPS Solutions, 5(1), 55-64.
[54] Wang J., Tsujii T., Rizos C., Dai L. & Moore M. (2001b) GPS and pseudo-satellites integration for precise positioning. Geomatics Research Australasia, 74:103-117.
[55] Wang J., L. Dai, T. Tsujii, C. Rizos, D. Grejner-Brzezinska & C.K. Toth (2001c) GPS/INS/Pseudolite integration: Concepts, simulation and testing, Proceedings of US Institute of Navigation GPS-2001, Salt Lake City, Utah, 11-14 September, 2708-2715
[56] Wawrzyniak G., Lightsey E.G., Key K.W. (2001) Ground experimentation of a pseudolite-only method for the relative positioning of two spacecraft, Proceedings of US Institute of Navigation GPS-2001, Salt Lake City, Utah, 11-14 September 1436-1478
[57] Weiser M. (1998) Development of a carrier and C/A-code based pseudolite system, Proceedings of US Institute of Navigation GPS-98, Nash-ville, USA, September, pp. 1465-1475.
[58] Zhao Y. (2000) Mobile phone location determination and its impact on intelligent transportation systems, IEEE Transactions on Intelligent Transportation Systems, 1(1):55-64.
[59] Zimmerman K.R. (1996) Experiments in the use of Global Positioning System for space vehicle rendezvous, PhD thesis, Standford University.
[60] Zimmerman K.R., Cohen C.E., Lawrence D.G., Montgomery P.Y., Cobb H.S. & Melto W.C. (2000) Multi-frequency pseudolites for instanta-neous carrier ambiguity resolution, Proceedings of US Institute of Navigation GPS-2000, Salt Lake City, Utah, 19-22 Sept., 1024-1030

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.