Dependence of Entanglement on Initial States under Amplitude Damping Channel in Non-Inertial Frames

Abstract

Under amplitude damping channel, the dependence of the entanglement on the initial states and , which reduce to four orthogonal Bell states if we take the parameter of states are investigated. We find that the entanglements for different initial states will decay along different curves even with the same acceleration and parame-ter of the states. We note that, in an inertial frame, the sudden death of the entanglement for will occur if , while it will not take place for for any α. We also show that the possible range of the sudden death of the entanglement for is larger than that for . There exist two groups of Bell state here we can’t distinguish only by concurrence.

Share and Cite:

W. Zhang, J. Deng and J. Jing, "Dependence of Entanglement on Initial States under Amplitude Damping Channel in Non-Inertial Frames," Journal of Quantum Information Science, Vol. 2 No. 2, 2012, pp. 23-27. doi: 10.4236/jqis.2012.22005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Physical Review, Vol. 47, No. 10, 1935, p. 777.
[2] E. Schr?dinger, “Die Gegenwartige Situation in der Quantenmechanik,” Naturwissenschaften, Vol. 23, No. 48, 1935, pp. 823-828.
[3] E. Schr?dinger, “Probability Relations between Separated Systems,” Proceedings of the Cambridge Philosophical Society, Vol. 32, No. 3, 1936, p. 446.
[4] J. S. Bell, “On the Einstein Podolsky Rosen Paradox,” Physics, Vol. 1, No. 3, 1964, pp. 195-200.
[5] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.
[6] W. H. Louisell, “Quantum Statistical Properties of Radiation,” John Wiley and Sons, New York, 1973.
[7] R. M. Gingrich and C. Adami, “Quantum Entanglement of Moving Bodies,” Physical Review Letters, Vol. 89, No. 27, 2002, Article ID: 270402. doi:10.1103/PhysRevLett.89.270402
[8] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann and T. E. Tessier, “Entanglement of Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 74, No. 3, 2006, Article ID: 032326.
[9] Q. Y. Pan and J. L. Jing, “Degradation of Nonmaximal Entanglement of Scalar and Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 77, No. 2, 2008, Article ID: 024302.
[10] Q. Y. Pan and J. L. Jing, “Hawking Radiation, Entanglement, and Teleportation in the Background of an Asymptotically Flat Static Blcak Hole,” Physical Review D, Vol. 78, No. 6, 2008, Article ID: 065015.
[11] J. C. Wang, Q. Y. Pan, S. B. Chen and J. L. Jing, “Entanglement of Coupled Massive Scalar Field in Background of Dilaton Black Hole,” Physics Letters B, Vol. 677, No. 3, 2009, p. 186. doi:10.1016/j.physlteb.2009.05.028
[12] J. C. Wang, J. F. Deng and J. L. Jing, “Classical Correlation and Quantum Discord Sharing of Dirac Fields in Noninertial Frames,” Physical Review A, Vol. 81, No. 5, 2010, Article ID: 052120. doi:10.1103/PhysRevA.81.052120
[13] J. C. Wang and J. L. Jing, “Quantum Decoherence in Noninertial Frames,” Physical Review A, Vol. 82, No. 3, 2010, Article ID: 032324. doi:10.1103/PhysRevA.82.032324
[14] S. Ghosh, G. Kar, A. Roy, A. Sen and U. Sen, “Distinguishability of Bell States,” Physical Review Letters, Vol. 87, No. 27, 2001, Article ID: 277902.
[15] A. Salles, F. de Melo1, M. P. Almeida1, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro and L. Davidovich, “Experimental Investigation of the Dynamics of Entanglement: Sudden Death, Complementarity, and Continuous Monitoring of the Environment,” Physical Review A, Vol. 78, No. 2, 2008, Article ID: 022322.
[16] I. Fuentes-Schuller and R. B. Mann, “Alice Falls into a Black Hole: Entanglement in Noninertial Frames,” Physical Review Letters, Vol. 95, No. 12, 2005, Article ID: 120404.
[17] P. Walther and A. Zeilinger, “Experimental Realization of a Photonic Bell-State Analyzer,” Physical Review A, Vol. 72, No. 1, 2005, Article ID: 010302. doi:10.1103/PhysRevA.72.010302
[18] M. Dusek, “Discrimination of the Bell States of Qudits by Means of Linear Optics,” Optics Communications, Vol. 199, No. 1, 2001, pp. 161-166. doi:10.1016/S0030-4018(01)01565-6
[19] J. M. Raimond, M. Brune and S. Haroche, “Manipulating Quantum Entanglement with Atoms and Photons in a Cavity,” Reviews of Modern Physics, Vol. 73, No. 3, 2001, p. 565.
[20] H. P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems,” Oxford University Press, Oxford, 2002.
[21] H. Carmichael, “An Open Systems Approach to Quantum Optics,” Springer, Berlin, 1993.
[22] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits,” Physical Review Letters, Vol. 80, No. 10, 1998, pp. 2245-2248. doi:10.1103/PhysRevLett.80.2245
[23] V. Coffman, J. Kundu and W. K. Wootters, “Distributed Entanglement,” Physical Review A, Vol. 61, No. 5, 2000, Article ID: 052306. doi:10.1103/PhysRevA.61.052306

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.