In vitro activity of cationic peptides against Neisseria gonorrhoeae and vaginal Lactobacillus species: The effect of divalent cations

Abstract

One of the new strategies for the prevention of HIV acquisition is the use of microbicides such as topical microbicides including antimicrobial and antiviral peptides. Ideally, new drug candidates should kill pathogens without determent to the normal bacterial flora considered important in health; such as hydrogen peroxide producing Lactobacillus species. The antimicrobial peptides LL-37 and LSA-5 were studied to determine their spectrum of activity against bacterial pathogens and normal flora organisms. The effects of divalent cations at biologically relevant concentrations were determined. We show the synthetic lytic peptide LSA-5 and the naturally occurring peptides LL-37 inactivate Neisseria gonorrhoeae but are less active against many normal flora members such as Lactobacillus species. Biologically relevant concentrations of calcium and magnesium prevented killing of sensitive strains. LSA-5 is more potent than LL-37, both are inhibited from killing sensitive strains by calcium and magnesium. Strains of Lactobacillus iners were killed by both microbicides even in the presence of the divalent cations. Antimicrobial peptides, such as LSA-5, have good potential for use in prevention of sexually transmitted disease, if formulated to sequester calcium and magnesium present in biological fluids.

Share and Cite:

Moncla, B. , Mietzner, T. and Hillier, S. (2012) In vitro activity of cationic peptides against Neisseria gonorrhoeae and vaginal Lactobacillus species: The effect of divalent cations. Advances in Bioscience and Biotechnology, 3, 249-255. doi: 10.4236/abb.2012.33034.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ballweber, L., Jaynes, J., Stamm, W. and Lampe, M. (2002) In vitro microbicidal activities of Cecropin peptides D2A21 and D4E1 and gel formulation containing 0.1% to 2% D2A21 against Chlamydia trachomatis. Antimicrobial Agents and Chemotherapy, 46, 34-41.
[2] Johansson, J., Gudmundsson, G., Rottenberg, M., Berndt, K. and Ager-berth, B. (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. The Journal of Biological Chemistry, 273, 3718-3724. doi:10.1074/jbc.273.6.3718
[3] Tencza, S., Douglass, J., Jr D.C., Montelaro, R. and Mietzner, T. (1997) TA. Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmem-brane proteins. Antimicrobial Agents and Chemotherapy, 41, 2394-2398.
[4] Moncla, B. and Hillier, S. (2005) Why nonoxynol-9 may have failed to prevent acquisition of Neisseria gonorrhoeae in clinical trials. Sexually Transmitted Diseases, 32, 491-494. doi:10.1097/01.olq.0000170444.13666.e9
[5] Oh, J., Hong, S. and Lee, K. (1999) Structure-activity relationship study: Short antimicrobial peptides. The Journal of Peptide Research, 53, 41-46. doi:10.1111/j.1399-3011.1999.tb01615.x
[6] Phadke, S., Islam, K., Deslouches, B., Kapoor, S., Stolz, D.B., Watkins, S., Montelaro, R., Pilewski, J.M. and Mietzner, T. (2003) Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides, 24, 1099-1107. doi:10.1016/j.peptides.2003.07.001
[7] Tencza, S., Miller, M., Kslam, I., Mietzner, T. and Montelaro, R. (1995) Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 trans-membrane protein. Journal of Virology, 69, 5199- 5202.
[8] Tencza, S., Creighton, D., Yuan, T., Vogel, H., Montelaro, R. and Mietzner, T. (1999) Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization. Journal of Antimicrobial Che- motherapy, 44, 33-41. doi:10.1093/jac/44.1.33
[9] Deslouches, B., Phadke, S., Cascio, M., Islam, K., Montelaro, R. and Mietzner, T. (2005) De novo generation of cationic antimicrobial peptides: Influence of length and tryptophan substitution on antimicrobial activity. Antimicrobial Agent and Chemotherapy, 49, 316-322. doi:10.1128/AAC.49.1.316-322.2005
[10] Miller, M., Cloyd, M., Liebmann, J., et al. (1993) Alterations in cell membrane permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology, 196, 89-100. doi:10.1006/viro.1993.1457
[11] Oren, Z., Lerman, J., Gudmundsson, G., Agerberth, B. and Shai, Y. (1999) Structure and organization of the human antimi-crobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its no- cell-selective activity. Biochemical Journal, 341, 501-513. doi:10.1042/0264-6021:3410501
[12] Phadke, S., Laza-revi, V., Bahr, C., Islam, K., Stolz, D.B., Watkins, S., Tencza, S., Vogel, H., Montelaro, R. and Mietzner, T. (2002) Lentivirus lytic peptide 1 perturbs both outer and inner membranes of Serratia marcescens. Antimicrobial Agent and Chemotherapy, 46, 2041-2045. doi:10.1128/AAC.46.6.2041-2045.2002
[13] Travis, S., Anderson, N.N., Forsyth, W.R., Espiritu, C., Conway, B.D., Greenberg, E.P., Lehrer, R.I., Welsh, M.J. and Tack, B.F. (2000) Bactericidal activity of mammalian cathelici-din-derived peptides. Infection and Immunity, 68, 2748-2755. doi:10.1128/IAI.68.5.2748-2755.2000
[14] Zhang, L., Dhillon, P., Yan, H., Farmer, S. and Hancock, R. (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas ae-ruginosa. Antimicrobial Agent and Chemother- apy, 44, 3317-3321.
[15] Cherpes, T., Meyn, L., Krohn, M., Lurie, J. and Hillier, S. (2003) Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clinical Infectious Diseases, 37, 319-325. doi:10.1086/375819
[16] Martin, H., Richardson, B., Nyange, P., Lavreys, L., Hillier, S., Chohan, B., Manda-liya, K., Ndinya-Achola, J., Bwayo, J. and Kreiss, J. (1999) Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. Journal of Infectious Diseases, 180, 1863-1868. doi:10.1086/315127
[17] Antonio, M., Hawes, L. and Hillier, S.L. (1999) The identification of vaginal Lactobacillus species and the demo-graphic and microbiologic characteristics of women colonized by these species. Journal of Infectious Diseases, 180, 1950-1956. doi:10.1086/315109
[18] Mande, H., Spitzbart, H., Sieke, V. and Vogel, C. (1990) Sodium, potassium, magnesium and calcium in vaginal content. Zentralbl Gynakol, 112, 1175-1180.
[19] Owen, D. and Katz, D. (1999) A vaginal fluid simulant. Contraception, 59, 91-95.
[20] Fontenot, J., Ball, J., Miller, M., David, C. and Montelaro, R. (1991) A survey of potential problems and quality con- trol in peptide synthesis by the fluorenylmethoxycar- bonyl procedure. Journal of Peptide Research, 4, 19-25.
[21] Gudmundsson, G.H.B., Odeberg, J., Bergman, T., Olsson, B. and Salcedo, R. (1996) The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. European Journal of Biochemistry, 238, 325-332. doi:10.1111/j.1432-1033.1996.0325z.x
[22] Cosentino, L., Landers, D. and Hillier, S. (2003) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by strand displacement amplification and relevance of the amplification control for use with vaginal swab specimens. Journal of Clinical Microbiology, 41, 3592-3596. doi:10.1128/JCM.41.8.3592-3596.2003
[23] Sarin, V., Kent, S. and Tam, J.B.M. (1981) Quantitative monitoring of solid-phase peptide syntheses by the ninhydrin reation. Analytical Biochemistry, 117, 147-157. doi:10.1016/0003-2697(81)90704-1
[24] Rabe, L. and Hillier, S. (2000) Effect of chlorhexidine on genital mi-croflora, Neisseria gonorrhoeae, and Tricho- monas va-ginalis in vitro. Sexually Transmitted Diseases, 27, 74-78. doi:10.1097/00007435-200002000-00004
[25] Holmes, K., Levine, R. and Weaver, M. (2004) Effec- tiveness of condoms in preventing sexually transmitted infections. Bulletin WHO, 82, 454-461. doi:10.1016/S0010-7824(99)00010-4
[26] Turner, J., Cho, Y., Dinh, N., Waring, A. and Lehrer, R. (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrobial Agent and Chemotherapy, 42, 2206-2214.
[27] Yang, D., Chen, Q., Schmid, A., Anderson, G., Wang, J., Wooters, J., Op-penheim, J. and Chertov, O. (2000) LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. The Journal of Experimental Medicine, 192, 1069-1074. doi:10.1084/jem.192.7.1069
[28] Witter, F., Barditch-Crovo, P., Rocco, L. and Trapnell, C. (1999) Duration of vaginal retention and potential duration of antiviral activity for five nonoxynol-9 containing intravaginal contraceptives. International Journal of Gynecology & Obstetrics, 65, 165-170.
[29] Antonio, M.A.D., Rabe, L.K. and Hillier, S.L. (2005) Colonization of the rectum by lactobacillus species and decreased risk of bacterial vaginosis. Journal of Infectious Diseases, 192, 394-398. doi:10.1086/430926
[30] Hagman, K., Pan, W., Spratt, B., Balthazar, J., Judd, R. and Shafer, W. (1995) Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtr RCDE efflux system. Microbiology, 141, 611-622. doi:10.1099/13500872-141-3-611
[31] Lucas, C., Hag-man, K., Levin, J., Stein, D. and Shafer, W. (1995) Importance of lipooligosaccharide structure in determining gonococcal resistance to hydrophobic antimicrobial agents resulting from the mtr efflux system. Molecular Microbiology, 16, 1001-1009. doi:10.1111/j.1365-2958.1995.tb02325.x
[32] Shafer, W., Wu, X.-D., Waring, A. and Lehrer, R. (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides to a member of resistance/nodulation/division efflux pump family. Proceedings of National Academic Science USA, 95, 1829-1833

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.