Share This Article:

Sources of Variability in the Use of Standardized Perfusion Value for HCC Studies

Full-Text HTML Download Download as PDF (Size:426KB) PP. 33-40
DOI: 10.4236/ojmi.2012.22006    2,889 Downloads   5,643 Views   Citations

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the world’s most common malignant tumours. As known, liver tumour tissue is characterised by an increased blood supply related to neoangionesis which causes an increased arterial vascularisation. CT Perfusion Imaging is an important, non invasive, technique for qualitative assessment of tissue perfusion after contrast agent administration. Nevertheless, being able to reliably quantifying angiogenesis is increasingly important to both the evaluation of the disease progression and monitoring of the therapeutic response of HCC. With this in mind, we believe that could be helpful to employ Standardised Perfusion Value (SPV), which has the potential to be a useful non-invasive marker of HCC angiogenesis. However, before using SPV in clinical practice, we need to verify its reliability. There are different causes of variability in applying the SPV index, e.g., the technical specifications of the CT system employed and the image processing system. In this paper the authors will analyse the variability of the BFa estimates and the variability due to the calibration procedure of the CT system, this with the objective of verifying how these factors affects SPV values. In our case, perfusion MDCT images of seventeen HCC patients were analysed. A software application, based on maximum slope method, was developed to compute BFa and SPV values. Four radiologists were involved in images processing evaluating variability related to ROI selection; each radiologist repeated the ROI drawing four times on the same image set. We computed the k calibration factor in order to evaluate SPV variability due to calibration protocol of CT systems. Results show that calibration factor variance, due to the position in the gantry, is less than BFa variability. So, we conclude that, when daily calibration is preferred, a simplified protocol, which neglects the dependence of K factor from the position, may be utilised; at least until the intrinsic variability of perfusion parameter computation operator-dependent will be reduced.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. D’Antò, M. Cesarelli, F. Fiore, M. Romano and P. Bifulco, "Sources of Variability in the Use of Standardized Perfusion Value for HCC Studies," Open Journal of Medical Imaging, Vol. 2 No. 2, 2012, pp. 33-40. doi: 10.4236/ojmi.2012.22006.

References

[1] K. A. Miles and M. R. Griffiths, “Perfusion CT: A Worthwhile Enhancement?” The British Journal of Radiology, Vol. 76, No. 904, 2003, pp. 220-231. doi:10.1259/bjr/13564625
[2] D. V. Sahani, N.-S. Holalkere, P. R. Mueller and A. X. Zhu, “Advanced Hepatocellular Carcinoma: CT Perfusion of Liver and Tumor Tissue—Initial Experience,” Radiology, Vol. 243, No. 3, 2007, pp. 736-743. doi:10.1148/radiol.2433052020
[3] G. Petralia, L. Preda, G. D’Andrea, S. Viotti, L. Bonello, R. De Filippi and M. Bellomi, “CT Perfusion in Solid-Body Tumours. Part I: Technical Issues,” Radiolmed, Vol. 115, No. 6, pp. 843-857.
[4] K. A. Miles, “Perfusion CT for the Assessment of Tumour Vascularity: Which Protocol?” The British Journal of Radiology, Vol. 76, No. 1, 2003, pp. S36-S42. doi:10.1259/bjr/18486642
[5] D. V. Sahani, N. Holalkere and A. X. Zhu, “Role of Perfusion CT in Monitoring Anti-Angiogenic Response in Patients with Advanced Hepatocellular Carcinoma,” Contrast Media and Molecular Imaging, Vol. 1, No. 2, 2006, pp. 72-72. doi:10.1002/cmmi.44
[6] B. Daniele, I. De Sio, F. Izzo, G. Capuano, A. Andreana, R. Mazzanti, et al., “CLIP Investigators Hepatic Resection and Percutaneous Ethanol Injection as Treatments of Small Hepatocellular Carcinoma: A Cancer of the Liver Italian Program (CLIP 08) Retrospective Case-Control Study,” Journal of Clinical Gastroenterology, Vol. 36, No. 1, 2003, pp. 63-67.
[7] R. Lencioni, “Loco-Regional Treatment of Hepatocellular Carcinoma,” Hepatology, Vol. 52, No. 2, 2010, pp. 762773. doi:10.1002/HEP.23725
[8] G. Chen, D.-Q. Ma, W. He, B.-F. Zhang and L.-Q. Zhao, “Computed Tomography Perfusion in Evaluating the Therapeutic Effect of Transarterial Chemoembolization for Hepatocellular Carcinoma,” World Journal of Gastroenterology, Vol. 14, No. 37, 2008, pp. 5738-5743. doi:10.3748/wjg.14.5738
[9] Z. Kan, S. Phongkitkarun, S. Kobayashi, Y. Tang, L. M. Ellis, T. Y. Lee, et al., “Functional CT for Quantifying Tumor Perfusion in Antiangiogenic Therapy in a Rat Model,” Radiology, Vol. 237, No. 1, 2005, pp. 151-158. doi:10.1148/radiol.2363041293
[10] Z. Kan, S. Kobayashi, S. Phongkitkarun and C. Charnsangavej, “Functional CT Quantification of Tumor Perfusion after Transhepatic Arterial Embolization in a Rat Model,” Radiology, Vol. 237, No. 1, 2005, pp. 144-150. doi:10.1148/radiol.2371040526
[11] F. X. Bosch, J. Ribes, M. Diaz and R. Cleries, “Primary Liver Cancer: Worldwide Incidence and Trends,” Gastroenterology, Vol. 127, No. 5, 2004, pp. S5-S16.
[12] K. Okuda, “Natural History of Hepatocellularcarcinoma Including Fibrolamellar and Hepatocholangiocarcinoma Variants,” Journal of Gastroenterology and Hepatology, Vol. 17, No. 4, 2002, pp. 401-405. doi:10.1046/j.1440-1746.2002.02734.x
[13] C. K. Kim, J. H. Lim, C. K. Park, D. Choi, H. K. Lim and W. J. Lee, “Neoangiogenesis and Sinusoidal Capillarization in Hepatocellular Carcinoma: Correlation between Dynamic CT and Density of Tumor Microvessels,” Radiology, Vol. 237, No. 2, 2005, pp. 529-534. doi:10.1148/radiol.2372041634
[14] P. V. Pandharipande, G. A. Krinsky, H. Rusinek and V. S Lee, “Perfusion Imaging of the Liver: Current Challenges and Future Goals,” Radiology, Vol. 234, No. 3, 2005, pp. 661-673. doi:10.1148/radiol.2343031362
[15] V. Goh, S. Halligan, J. A. Hugill, P. Bassett and C. I. Bartram, “Quantitative Assessment of Colorectal Cancer Perfusion Using MDCT: Interand Intraobserver Agreement,” American Journal of Roentgenology, Vol. 185, No. 1, 2005, pp. 225-231.
[16] D. Fiorella, J. Heiserman, E. Prenger and S. Partovi, “Assessment of the Reproducibility of Postprocessing Dynamic CT Perfusion Data,” American Journal of Neuroradiology, Vol. 25, No. 1, 2004, pp. 97-107.
[17] K. A. Miles, M. R. Griffiths and M. A. Fuentes, “Standardized Perfusion Value: Universal CT Contrast Enhancement Scale that Correlates with FDG PET in Lung Nodules,” Radiology, Vol. 220, No. 2, 2001, pp. 548-553.
[18] K. A. Miles, M. R. Griffiths and C. J. Keith, “Blood Flow-Metabolic Relationships are Dependent on Tumour Size in Non-Small Cell Lung Cancer: A Study Using Quantitative Contrast-Enhanced Computer Tomography and Positron Emission Tomography,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 33, No. 1, 2005, pp. 22-28. doi:10.1007/s00259-005-1932-7
[19] Ashley M Groves, Gordon C Wishart, M Shastry, P. Moyle, S. Iddles, P. Britton, et al., “Metabolic-Flow Relationships in Primary Breast Cancer: Feasibility of Combined PET/ Dynamic Contrast-Enhanced CT,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 36, No. 3, 2009, pp. 416-421. doi:10.1007/s00259-008-0948-1
[20] K. A. Miles, H. Young, S. L. Chica and P. D. Esser, “Quantitative Contrast-Enhanced Computed Tomography: Is There a Need for System Calibration?” European Radiology, Vol. 17, No. 4, 2007, pp. 919-926. doi:10.1007/s00330-006-0424-x
[21] T. Kobayashi, T. Hayashi, S. Funabasama, S. Tsukagoshi, M. Minami and N. Moriyama, “Three-Dimensional Perfusion Imaging of Hepatocellular Carcinoma Using 256-Slice Multidetector-Row Computed Tomography,” Radiation Medicine, Vol. 26, No. 9, 2008, pp. 557-561. doi:10.1007/s11604-008-0266-3
[22] M. D’Antò, M. Cesarelli, P. Bifulco, M. Romano, V. Cerciello, F. Fiore, et al., “Study of Different Time Attenuation Curve Processing in Liver CT Perfusion,” Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Corfù, 3-5 November 2010, pp. 1-4. doi:10.1109/ITAB.2010.5687750
[23] V. Goh, S. Halligan, A. Gharpuray, D. Wellsted, J. Sundin and C. I. Bartram, “Quantitative Assessment of Colorectal Cancer Tumor Vascular Parameters by Using Perfusion CT: Influence of Tumor Region of Interest,” Radiology, Vol. 247, No. 3, 2008, pp. 726-732. doi:10.1148/radiol.2473070414
[24] M. J. Siegel, B. Schmidt, D. Bradley, C. Suess, and C. Hildebolt, “Radiation Dose and Image Quality in Pediatric CT: Effect of Technical Factors and Phantom Size and Shape,” Radiology, 2004, Vol. 233, No. 2, pp. 515-522.
[25] F. Fiore, P. Vallone, P. Ricchi, R. Tambaro, B. Daniele, F. Sandomenico, R. De Vivo, C. Civiletti, F. Izzo, S. Pignata and M. Ziviello, “Levovist-Enhanced Doppler Sonography Versus Spiral Computed Tomography to Evaluate Response to Percutaneous Ethanol Injection in Hepatocellular Carcinoma,” Journal of Clinical Gastroenterology, Vol. 36, No. 1, 2003, pp. 63-67.
[26] H. K. Lim, D. Choi, W. J. Lee, S. H. Kim, S. J. Lee, H. J. Jang, et al., “Hepatocellular Carcinoma Treated with Percutaneous Radio-Frequency Ablation: Evaluation with Follow-Up Multiphase Helical CT,” Radiology, Vol. 221, No. 2, 2001, pp. 447-454. doi:10.1148/radiol.2212010446
[27] I. R. Kamel, E. Liapi and E. K. Fishman, “Multidetector CT of Hepatocellular Carcinoma,” Best Practice & Research Clinical Gastroenterology. Vol. 19, No.1, 2005, pp. 63-89.
[28] K. Takanami, S. Higano, K. Takase, T. Kaneta, T. Yamada, H. Ishiya, et al., “Validation of the Use of Calibration Factors between the Iodine Concentration and the Computed Tomography Number Measured outside the Objects for Estimation of Iodine Concentration inside the Objects: Phantom Experiment,” Radiation Medicine, Vol. 26, No. 4, 2008, pp. 237-243. doi:10.1007/s11604-007-0220-9
[29] R. Wong and C. Frenette, “Management of Hepatocellular Carcinoma: An Update,” Hepatology, Vol. 53, No. 3, 2011, pp. 16-24.
[30] D. V. Sahani, N. S. Holalkere, P. R. Mueller and A. X. Zhu, “Advanced Hepatocellular Carcinoma: CT Perfusion of Liver and Tumor Tissue—Initial Experience,” Radiology, Vol. 243, No. 3, 2007, pp. 736-743. doi:10.1148/radiol.2433052020

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.