Cholesterol Oxidase and Its Applications

Abstract

Cholesterol oxidase (COX), a bi-functional FAD-containing microbial enzyme belongs to the family oxidoreductases. COX catalyses the oxidation of cholesterol into 4-cholesten-3-one. In recent time, cholesterol oxidase has received great attention due to its wider use in clinical (determination of serum cholesterol) laboratories practice and in the biocatalysis for the production of a number of steroids. COX has been shown to possess potent insecticidal activity, besides its use to track cell cholesterol. Moreover, COX is also implicated in the manifestation of some of the diseases of bacterial (tuberculosis), viral (HIV) and non-viral prion origin (Alzheimer's). These applications and disease mechanisms have promoted the need of screening, isolation and characterization of newer microbes from diverse habitats as a source of COX to learn more about its structural and functional aspects. In this review, we discuss microbial sources of COX, its structure and important biochemical properties besides its broad range of biological functions and applications.

Share and Cite:

L. Kumari and S. S. Kanwar, "Cholesterol Oxidase and Its Applications," Advances in Microbiology, Vol. 2 No. 2, 2012, pp. 49-65. doi: 10.4236/aim.2012.22007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. E. Turfitt, “The Microbiological Degradation of Steroids. Oxidation of Cholesterol by Proactinomyces spp.,” Journal of Biochemistry, Vol. 38, No. 5, 1944, pp. 49-62.
[2] D. R. Corbin, J. T. Greenplate, E. Y. Wong and J. P. Purcell, “Cloning of an Insecticidal Cholesterol Oxidase Gene and Its Expression in Bacteria and Plant Protoplasts,” Applied and Environmental Microbiology, Vol. 60, No. 12, 1994, pp. 4239-4244.
[3] J. P. Purcell, J. T. Greenplate, M. G. Jennings, J. S. Ryerse, J. C. Pershing, S. R. Sims, M. J. Prinsen, D. R. Corbin, M. Tran and R. D. Sammons, “Cholesterol Oxidase: A Potent Insecticidal Protein Active against Boll Weevil Larvae,” Biochemical and Biophysical Research Communications, Vol. 196, No. 3, 1993, pp. 1406-1413. doi:10.1006/bbrc.1993.2409
[4] J. Li, A. Vrielink, P. Brick and D. M. R. Blow, “Crystal Structure of Cholesterol Oxidase Complexed with a Steroid Substrate: Implications for Flavin Adenine Dinucleotide Dependent Alcohol Oxidases,” Biochemistry, Vol. 32, No. 43, 1993, pp. 11507-11515. doi:10.1021/bi00094a006
[5] N. S. Sampson, I. J. Kass and K. B. Ghoshroy, “Assessment of the Role of V Loop of Cholesterol Oxidase: A Truncated Loop Mutant Has Altered Substrate Specificity,” Biochemistry, Vol. 37, No. 16, 1998, pp. 5770-5778. doi:10.1021/bi973067g
[6] T. Yamane, H. Nakatani and E. Sada, “Steroid Bioconversion in Water-Soluble Organic Solvents: ?1-Dehydrogenation by Free Microbial Cells and by Cells Entrapped in Hydrophilic or Lipophilic Gel,” Biotechnology and Bioengineering, Vol. 21, No. 11, 1979, pp. 2133-2145.
[7] C. Lee and W. Liu, “Production of Androsta-1, 4-Diene-3, 17-Dione from Cholesterol Using Immobilized Growing Cells of Mycobacterium sp. NRRL B-3683 Adsorbed on Solid Carriers,” Applied Microbiology and Biotechnology, Vol. 36, No. 5, 1992, pp. 598-603. doi:10.1007/BF00183235
[8] A. Constantinidis, “Steroid Transformation at High Substrate Concentrations Using Immobilized Corynebacterium simplex Cells,” Biotechnology and Bioengineering, Vol. 22, No. 1, 1980, pp. 119-136. doi:10.1002/bit.260220110
[9] A. Schatz, K. Savard and I. J. Pinter, “The Ability of Soil Microorganisms to Decompose Steroids,” Journal of Bacteriology, Vol. 58, No. 2, 1949, pp. 117-125.
[10] T. C. Stadtman, A. Cherkes and C. B. Anfinsen, “Studies on the Microbial Degradation of Cholesterol,” Journal of Biological Chemistry, Vol. 206, 1954, pp. 522-523.
[11] N. P. Ferreira and R. P. Tracey, “Numerical Taxonomy of Cholesterol-Degrading Soil Bacteria,” Journal of Applied Bacteriology, Vol. 57, No. 3, 1984, pp. 429-446. doi:10.1111/j.1365-2672.1984.tb01409.x
[12] K. H. Watanabe, S. H. Aihara, R. Nakamura, K. I. Suzuki and K. Komagata, “Isolation and Identification of Cholesterol Degrading Rhodococuss Strain from Food of Animal Origin and Their Cholesterol Oxidase Activities,” Journal of General Applied Microbiology, Vol. 32, No. 2, 1986, pp. 137-147. doi:10.2323/jgam.32.137
[13] H. Lashkarian, J. Raheb, K. Shahzamani, H. Shahbani and M. Shamsara, “Extracellular Cholesterol Oxidase from Rhodococcus sp.: Isolation and Molecular Characterization,” Iranian Biomedical Journal, Vol. 14, No. 1-2, 2010, pp. 49-57.
[14] R. Kanchana, D. Correia, S. Sarkar, P. Gawde and A. Rodrigues, “Production and Partial Characterization of Cholesterol Oxidase from Micrococcus sp. Isolated from Goa, India,” International Journal of Applied Biology and Pharmaceutical Technology, Vol. 2, No. 2, 2011, pp. 393-398.
[15] Y. Sun, H. Yang, X. Zhong, L. Zhang and W. Wang, “Ultrasonic-Assisted Enzymatic Degradation of Cholesterol in Egg Yolk,” Innovative Food Science and Emerging Technologies, accepted manuscript, 2011.
[16] N. Doukyu and R. Aono, “Purification of extracellular Cholesterol Oxidase with High Activity in the Presence of Organic Solvent from Pseudomonas sp. Strain ST-200,” Applied Environmental Microbiology, Vol. 64, No. 5, 1998, pp. 1929-1932.
[17] N. Doukyu, “Characteristics and Biotechnological Applications of Microbial Cholesterol Oxidase,” Applied Microbiology and Biotechnology, Vol. 83, No. 5, 2009, pp. 825-837. doi:10.1007/s00253-009-2059-8
[18] P. S. J. Cheetham, P. Dunnill and M. D. Lilly, “The Characterization and Inter-Conversion of Three Forms of Cholesterol Oxidase Extracted from Nocardia rhodochrous,” Journal of Biochemistry, Vol. 201, No. 3, 1982, pp. 515-521.
[19] Y. A. Petrova, G. M. Podsukhina, T. A. Dikun and A. A. Selezneva, “Conditions of Isolation of Cholesterol Oxidase from Actinomyces lavendulae mycelium,” Applied Biochemistry and Microbiology, Vol. 15, No. 2, 1979, pp. 125-128.
[20] W. H. Liu, M. H. Meng and K. S. Chen, “Purification and Some Properties of Cholesterol Oxidases Produced by an Inducible and a Constitutive Mutant of Arthrobacter simplex,” Agricultural and Biological Chemistry, Vol. 52, No. 2, 1988, pp. 4130-4138. doi:10.1271/bbb1961.52.413
[21] T. Uwajima, H. Yabi and O. Terada, “Properties of Crystalline 3β-Hydroxysteroid Oxidase of Brevibacterium sterolicum,” Agricultural and Biological Chemistry, Vol. 38, No. 6, 1974, pp. 1149-1156. doi:10.1271/bbb1961.38.1149
[22] T. Uwajima and O. Terada, “On the Kinetics of cholesterol Oxidase from Brevibacterium sterolicum in the Presence of Detergent,” Agricultural and Biological Chemistry, Vol. 38, No. 6, 1978, pp. 1149-1156. doi:10.1271/bbb1961.38.1149
[23] N. Croteau and A. Vrielink, “Crystallization and Preliminary X-Ray Analysis of Cholesterol Oxidase from Brevibacterium sterolicum Containing Covalently Bound FAD,” Journal of Structural Biology, Vol. 116, No. 2, 1996, pp. 317-319. doi:10.1006/jsbi.1996.0047
[24] L. Motteran, M. S. Pilone, G. Molla, S. Ghisla and L. Pollegioni, “Cholesterol Oxidase from Brevibacterium sterolicum the Relationship between Covalent Flavinylation and Redox Properties,” The Journal of Biological Chemistry, Vol. 276, 2001, pp. 18024-18030. doi:10.1074/jbc.M010953200
[25] C. H. Rhee, K. P. Kim and H. D. Park, “Two Novel Extracellular Cholesterol Oxidases of Bacillus sp. Isolated from Fermented Flatfish,” Biotechnology Letters, Vol. 24, No. 17, 2002, pp. 1385-1389. doi:10.1023/A:1019888428005
[26] Y. Shirokane, K. Nakamura and K. Mizusawa, “Purification and Some Properties of an Extracellular 3b-Hydroxysteroid Oxidase Produced by Corynebacterium cholesterolicum,” Journal of Fermentation Technology, Vol. 55, 1977, pp. 337-346.
[27] A. G. Smith and C. J. W. Brooks, “Application of Cholesterol Oxidase in the Analysis of Steroids,” Journal of Chromatography, Vol. 101, No. 2, 1974, pp. 373-378. doi:10.1016/S0021-9673(00)82854-X
[28] B. C. Buckland, W. Richmond, P. Dunnill and M. D. Lilly, “The Large-Scale Isolation of Intracellular Microbial Enzymes: Cholesterol Oxidase from Nocardia,” Industrial Aspects of Biochemistry, Federation of European Biochemical Societies, Amsterdam, 1974, pp. 65-79.
[29] S. Lee, H. Rhee, W. Tae, J. Shin and B. Parlk, “Purification and Characterization of Cholesterol Oxidase from Pseudomonas sp. and Taxonomic Study of the Strain,” Applied Microbiology and Biotechnology, Vol. 31, No. 5-6, 1989, pp. 542-546. doi:10.1007/BF00270791
[30] F. Cheillan, H. Lafont, E. Termine, F. Fernandez, P. Sauve and G. Lesgards, “Molecular Characteristics of the Cholesterol Oxidase and Factors Influencing Its Activity,” Biochimica et Biophysica Acta, Vol. 999, No. 3, 1989, pp. 233-238. doi:10.1016/0167-4838(89)90002-2
[31] N. Doukyu and R. Aono, “Purification of Extracellular Cholesterol Oxidase with High Activity in the Presence of Organic Solvents from Pseudomonas sp. Strain ST-200,” Applied and Environmental Microbiology, Vol. 64, No. 5, 1998, pp. 1929-1932.
[32] M. P. Bokoch, A. Devadaoo, M. S. Palencsar and J. D. Burgess, “Steady-State Oxidation of Cholesterol Catalysed by Cholesterol Oxidase in Liquid Bilayer Membranes on Platinum Electrodes,” Analytica Chimica Acta, Vol. 519, No. 1, 2004, pp. 47-55. doi:10.1016/j.aca.2004.03.030
[33] T. L. Johnson and G. A. Somkuti, “Isolation of Cholesterol Oxidase from Rhodococcus equi ATCC 33706,” Biotechnology and Applied Biochemistry, Vol. 13, No. 2, 1991, pp. 196-204.
[34] H. Fukuda, Y. Kawakami and S. Nakamura, “A Method to screen Anti-Cholesterol Substances Produced by Microbes and a New Cholesterol Oxidase Produced by Streptomyces violescens,” Chemical and Pharmaceutical Bulletin, Vol. 21, No. 9, 1973, pp. 2057-2060. doi:10.1248/cpb.21.2057
[35] M. Fukuyama and Y. Miyake, “Purification and Properties of Cholesterol Oxidase from Schizophyllum with Covalently Bound Flavin,” Journal of Biochemistry, Vol. 85, No. 5, 1979, pp. 1183-1193.
[36] Y. Nishiya, N. Harada, S. Teshima, M. Yamahita, I. Fuji, N. Hirayama and Y. Murooka, “Improvement of Thermal Stability Of Sterptomyces choletsterol oxidase by Random Mutagenesis and a Structure Interpretation,” Protein Engineering, Vol. 10, No. 3, 1997, pp. 231-235. doi:10.1093/protein/10.3.231
[37] Y. Kimberley, J. K. Ignatius, N. S. Sampson and A. Vrielink, “Crystal Structure Determination of Cholesterol Oxidase from Streptomyces and Structural Characterization of Key Active Site Mutants,” Biochemistry, Vol. 38, No. 14, 1999, pp. 4277-4286. doi:10.1021/bi982497j
[38] K. B. Ghoshroy, W. Zhu and N. S. Sampson, “Investigation of Membrane Disruption in the Reaction Catalyzed by Cholesterol Oxidase,” Biochemistry, Vol. 36, No. 20, 1997, pp. 6133-6140. doi:10.1021/bi962190p
[39] L. N. Sampson and A. Vrielink, “Sub-Atomic Resolution Crystal Structure of Cholesterol Oxidase, what Atomic Resolution Crystallography Revels about Enzyme Mechanism and the Role of the FAD Cofactor in Redox Activity,” Journal of Molecular Biology, Vol. 326, No. 5, 2003, pp. 1635-1650. doi:10.1016/S0022-2836(03)00054-8
[40] K. Isobe, N. Mori and N. Wakao, “The Second Cholesterol Oxidase Produced by γ-Proteobacterium Y-134,” Journal of Bioscience and Bioengineering Vol. 96, No. 3, 2003, pp. 257-261.
[41] M. Takagi, T. Yoshida and H. Taguchi, “Effect of Oleic Acid Adsorption onto Cell Surface on Cholesterol Oxidase Production by Schizophyllum commune,” Journal of Fermentation Technology, Vol. 60, No. 1, 1982, pp. 31-35.
[42] T. Ohta, K. Fujishoro, K. Yamaguchi, Y. Tamura, K. Aisaka, T. Uwajima and M. Hasegawa, “Sequence of Gene choB Encoding Cholesterol Oxidase of Brevibacterium sterolicum: Comparison with choA of Streptomyces sp. SA-COO,” Gene, Vol. 103, No. 1, 1991, pp. 93-96. doi:10.1016/0378-1119(91)90397-T
[43] T. Ohta, K. Fujishiro, K. Yamaguchi, T. Uwajima, K. Aisaka and M. Hasegawa, “Hyperexpression and Analysis of choB Encoding Cholesterol Oxidase of Brevibacterium sterolicum in Escherichia coli and Streptomyces lividans,” Bioscience, Biotechnology, and Biochemistry, Vol. 56, No. 11, 1992, pp. 1786-1791. doi:10.1271/bbb.56.1786
[44] T. Ishizaki, N. Hirayama, H. Shinkawa, O. Nimi and Y. Murooka, “Nucleotide Sequence of the Gene for Cholesterol Oxidase from a Streptomyces sp.,” Journal of Bacteriology, Vol. 171, No. 2, 1989, pp. 596-601.
[45] K. Fujishoro, T. Ohta, M. Hasegawa, K. Yamaguchi, T. Mizukami and T. Uwajima, “Isolation and Identification of the Gene of Cholesterol Oxidase from Brevibacterium Sterolicum ATCC 21387 a Widely Used Enzyme in Clinical Analysis,” Biochemical and Biophysical Research Communications, Vol. 172, 1990, pp. 721-727. doi:10.1016/0006-291X(90)90734-5
[46] M. Horii, T. Ishizaki, S. Y. Paik, T. Manome and Y. Murooka, “An Operon Containing the Genes for Cholesterol Oxidase and Acytochrome P-450 Like Protein from a Streptomyces,” Journal of Bacteriology, Vol. 172, No. 7, 1990, pp. 3644-3653.
[47] I. Molnar, K. P. Choi, N. Hayashi and Y. Murooka, “Bacterial Cholesterol Oxidases Are Able to Act as Flavoprotein-Linked Ketosteroid Monooxygenases that Catalyse the Hydroxylation of Cholesterol to 4-Cholesten-6-ol-3-one,” Journal of Fermentation and Bioengineering, Vol. 72, 1991, pp. 368-372.
[48] D. K. Solaiman and G. A. Somkuti, “Expression of Streptomyce Cholesterol Oxidase in Escherichia coli,” Journal of Industrial Microbiology, Vol. 8, No. 4, 1991, pp. 253-258. doi:10.1007/BF01576063
[49] D. K. Solaiman, G. A. Somkuti and D. H. Steinberg, “Construction and Characterization of Shuttle Plasmids for Lactic Acid Bacteria and Escherichia coli,” Plasmid, Vol. 28, No. 1, 1992, pp. 25-36. doi:10.1016/0147-619X(92)90033-7
[50] D. K. Solaiman and G. A. Somkuti, “Expression of Streptomyces melC and choA Genes by a Cloned Streptococcus thermophilus Promoter STP2201,” Journal of Industrial Microbiology, Vol. 15, No. 1, 1995, pp. 39-44. doi:10.1007/BF01570011
[51] D. K. Solaiman and G. A. Somkuti, “Isolation and Characterization of Transcription Signal Sequences from Streptococcus thermophilus,” Current Microbiology, Vol. 34, No. 4, 1997, pp. 216-219. doi:10.1007/s002849900171
[52] P. Brigidi, F. Bolognani, M. Rossi, C. Cerre and D. Matteuzzi, “Cloning of the Gene for Cholesterol Oxidase in Bacillus sp., Lactobacillus reuteri and Its Expression in Escherichia coli,” Letters in Applied Microbiology, Vol. 17, No. 2, 1993, pp. 61-64. doi:10.1111/j.1472-765X.1993.tb00371.x
[53] Y. Murooka, T. Ishizaki, O. Nimi and N. Maekawa, “Cloning and Expression of a Streptomyces Cholesterol Oxidase Gene in Streptomyces lividans with Plasmid pIJ702,” Applied Environmental Microbiology, Vol. 52, No. 6, 1996, pp. 1382-1385.
[54] G. A. Somkuti, D. K. Solaiman, T. L. Johnson and D. H. Steinberg, “Transfer and Expression of a Streptomyces cholesterol Oxidase Gene in Streptococcus thermophilus,” Biotechnology and Applied Biochemistry, Vol. 13, No. 2, 1991, pp. 238-245.
[55] H. E. Lashkarian, J. Raheb, K. Shahzamani, H. Shahbani, M. Shamsara and M. Hajipour, “Isolation and Identification of a Native Rhodococcus Strain Producing Cholesterol Oxidase from Soil,” International Journal of Biotechnology and Biochemistry, Vol. 6, 2010, pp. 205-217.
[56] T. Yoshimoto, A. Ritani, K. Ohwada, K. Takahashi, Y. Kodera, A. Matsushima, Y. Saito and Y. Inada, “Polyethylene Glycol Derivative-Modified Cholesterol Oxidase Soluble and Active in Benzene,” Biochemical and Biophysical Research Communications, Vol. 148, No. 2, 1987, pp. 876-882. doi:10.1016/0006-291X(87)90957-0
[57] A. Gupte, R. Nagarajan and A. Kilara, “Block Copolymer Micro Domains: A Novel Medium for Enzymatic Reactions,” Biotechnology Progress, Vol. 7, No. 4, 1991, pp. 348-354. doi:10.1021/bp00010a009
[58] I. J. Kass and N. S. Sampson, “The Isomerization Catalyzed by Brevibacterium sterolicum Cholesterol Oxidase Proceeds Stereo Specifically with One Base,” Biochemical and Biophysical Research Communications, Vol. 206, No. 2, 1995, pp. 688-693. doi:10.1006/bbrc.1995.1097
[59] A. G. Smith and C. J. W. Brooks, “Studies on the Substrate Specificity of Cholesterol Oxidase from Nocardia erythropolis in the Oxidation of 3-Hydroxy Steroids,” Biochemical Society Transactions Vol. 3, No. 5, 1975, pp. 675-677.
[60] T. Kamei, Y. Takiguchi, H. Suzuki, M. Matsuzaki and S. Nakamura, “Purification and Properties of Streptomyces violascens Origin by Affinity Chromatography on Cholesterol,” Chemical and Pharmaceutical Bulletin, Vol. 26, No. 9, 1978, pp. 2799-2804. doi:10.1248/cpb.26.2799
[61] Y. Inouye, K. Taguchi, A. Fuji, K. Ishimaru, S. Nakamura and R. Nomi, “Purification and Characterization of Extracellular 3b-Hydroxysteroid Oxidase Produced by Streptoverticillium cholesterolicum,” Chemical and Pharmaceutical Bulletin, Vol. 30, No. 3, 1982, pp. 951-958. doi:10.1248/cpb.30.951
[62] Enzyme Nomenclature Elsevier, Amsterdam, Netherlands 1972.
[63] D. P. Edwards, J. L. Conner, E. D. Bransome and W. E. Braselton, “Human Placental 3β-Hydroxysteroid Dehydrogenase: D5-Isomerase,” The Journal of Biological Chemistry, Vol. 251, 1976, pp. 1632-1638.
[64] A. Noma and K. Nakayama, “Comparative Studies on Cholesterol Oxidases from Different Sources,” Clinica Chimica Acta, Vol. 73, No. 3, 1976, pp. 487-496. doi:10.1016/0009-8981(76)90152-2
[65] W. Richmond, “Preparation and Properties of Bacterial Cholesterol Oxidase from Nocardia sp. and Its Application to the Enzymatic Assay of Total Cholesterol in Serum,” Clinical Chemistry, Vol. 19, No. 12, 1973, pp. 1350-1356.
[66] K. Hino, M. Nakamura, K. Nakanishi and M. Manabe, “A New Method for the Homogeneous Assay of Serum HDL,” Clinical Chemistry, Vol. 42, 1996, pp. 296-299.
[67] K. Shirai, T. Nema, Y. Hiroh, Y. Itoh, Y. Miyashita and H. Watanabe, “Clinical Efficacy of the Direct Assay Method Using Polymers for Serum High Density Lipoprotein Cholesterol,” Journal of Laboratory and Clinical Medicine, Vol. 11, No. 2, 1997, pp. 82-86.
[68] M. Okada, H. Matsui, Y. Ito, A. Fujiwara and K. Inano, “Low-Density Lipoprotein Cholesterol Can Be Chemically Measured: A New Superior Method,” Journal of Laboratory and Clinical Medicine, Vol. 132, No. 3, 1998, pp. 195-201. doi:10.1016/S0022-2143(98)90168-8
[69] J. Biellmann, “Resolution of Alcohols by Cholesterol Oxidase from Rhodococcus erythropolis: Lack of Enantiospecificity for the Steroids,” Chirality, Vol. 13, No. 1, 2001, pp. 34-39. doi:10.1002/1520-636X(2001)13:1<34::AID-CHIR7>3.0.CO;2-O
[70] K. Isobe, K. Shoji, Y. Nakanishi, M. Yokoe and N. Wakao, “Purification and Some Properties of Cholesterol Oxidase Stable in Detergents from Gamma-Proteobacterium Y-134,” The Journal of Bioscience and Bioengineering, Vol. 95, No. 3, 2003, pp. 257-263.
[71] S. Dieth, D. Tritsch and J. F. Biellmann, “Resolution of Allylic Alcohols by Cholesterol Oxidase Isolated from Rhodococcus erythropolis,” Tetrahedron Letters, Vol. 36, No. 13, 1995, pp. 2243-2246. doi:10.1016/0040-4039(95)00235-5
[72] R. Aono and N. Doukyu, “Stereo Specific Oxidation of 3b-Hydroxysteroids by per Solvent Fermentation with Pseudomonas sp. ST-200,” Bioscience, Biotechnology, and Biochemistry, Vol. 60, No. 7, 1996, pp. 1146-1151. doi:10.1271/bbb.60.1146
[73] R. Aono, N. Doukyu, H. Kobayashi, H. Nakajima and K. Horikoshi, “Oxidative Bioconversion of Cholesterol by Pseudomonas sp. Strain ST-200 in a Water-Organic Solvent Two-Phase System,” Applied Environmental Microbiology, Vol. 60, No. 7, 1994, pp. 2518-2523.
[74] R. Z. Kazandjian, J. S. Durdich and A. M. Kilbanov, “Enzymatic Analysis in Organic Solvents,” Biotechnology and Bioengineering, Vol. 28, No. 3, 1986, pp. 417-421. doi:10.1002/bit.260280315
[75] M. Mewies, W. S. McIntire and N. S. Scrutton, “Covalent Attachment of Flavin Adenine Dinucleotide (FAD) and Flavin Mononucleotide (FMN) to Enzymes: The Current State of Affairs,” Protein Science, Vol. 7, No. 1, 1989, pp. 77-20.
[76] N. Lario, M. Fernandez, J. Aguero, B. G. Zorn, J. A. Vazquez-Boland and J. Navas, “Rapid Identification of Rhodococcus equi by a PCR Assay Targeting the choE Gene,” Journal of Clinical Microbiology, Vol. 41, No. 7, 2003, pp. 3241-3245. doi:10.1128/JCM.41.7.3241-3245.2003
[77] A. Vrielink, L. F. Lloyd and D. M. Blow, “Crystal Structure of Cholesterol Oxidase from Brevibacterium sterolicum Refined at 1.8 A Resolution,” Journal of Molecular Biology, Vol. 219, No. 3, 1991, pp. 533-554. doi:10.1016/0022-2836(91)90192-9
[78] Q. K. Yue, I. J. Kass, N. S. Sampson and A. Vrielink, “Crystal Structure Determination of Cholesterol Oxidase from Streptomyces and Structural Characterization of Key Active Site Mutants,” Biochemistry, Vol. 38, No. 14, 1999, pp. 4277-4286. doi:10.1021/bi982497j
[79] R. Coulombe,K. Q. Yue, S. Ghisla and A. Vrielink, “Oxygen Access to the Active Site of Cholesterol Oxidase through a Narrow Channel Is Gated by an Arg-Glu Pair,” The Journal of Biological Chemistry, Vol. 276, 2001, pp. 30435-30441. doi:10.1074/jbc.M104103200
[80] G. Gadda, G. Wels, L. Pollegioni, S. Zucchelli, D. Ambrosius, M. S. Pilone and S. Ghisla, “Characterization of Cholesterol Oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum,” European Journal of Biochemistry, Vol. 250, No. 2, 1997, pp. 369-376. doi:10.1111/j.1432-1033.1997.0369a.x
[81] L. Pollegioni, G. Wels, M. S. Pilone and S. Ghisla, “Kinetic Mechanism of Cholesterol Oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum,” European Journal of Biochemistry, Vol. 264, No. 1, 1999, pp. 140-151. doi:10.1046/j.1432-1327.1999.00586.x
[82] D. E. Edmondson and V. P. Newton, “The Covalent FAD of Monoamine Oxidase: Structural and Functional Role and Mechanism of the Flavinylation Reaction,” Antioxidants and Redox Signaling, Vol. 3, No. 5, 2010, pp. 789-806. doi:10.1089/15230860152664984
[83] P. S. J. Cheetham, P. Dunnill and M. D. Lilly, “Extraction of Cholesterol Oxidase from Nocardia rhodochrous,” Enzyme and Microbial Technology, Vol. 2, No. 3, 1980, pp. 201-205. doi:10.1016/0141-0229(80)90047-2
[84] P. S. J. Cheetham, “The Identification, Properties, and Immobilization of the 3P-Hydroxysteroid Oxidase and 3-Oxosteroid A"-A'-Isomerase Components of cholesterol Oxidase from Nocardia rhodochrous,” Journal of Applied Biochemistry, Vol. 1, No. , 1979, pp. 51-59.
[85] L. Motteran, M. S. Pilone, G. Molla, S. Ghisla and L. Pollegioni, “Cholesterol Oxidase from Brevibacterium sterolicum the Relationship between Covalent Flavinylation and Redox Properties,” The Journal of Biological Chemistry, Vol. 276, 2001, pp. 18024-18030. doi:10.1074/jbc.M010953200
[86] M. D. Lilly, P. S. J. Cheetham, D. J. Lewis, J. Yates and P. Dunnill, “Abstract in International Fermentation Symposium,” Vol. 5, Berlin, 1976, p. 327.
[87] C. C. Allain, L. S. Poon, C. S. G. Chan, W. Richmond and P. C. Fu, “Enzymatic Determination of Total Serum Cholesterol,” Clinical Chemistry, Vol. 20, No. 4, 1974, pp. 470-475.
[88] P. Lolekha and Y. Jantaveesirirat, “Streptomyces, A Superior Sources of Cholesterol Oxidase Used in Serum Cholesterol Assay,” Journal of Clinical Laboratory Analysis, Vol. 6, No. 6, 1992, pp. 705-709. doi:10.1002/jcla.1860060612
[89] Y. Mitsuo, T. Mitsutoshi, O. Hisaya, F. Isao, H. Noriaki and M. Yoshikatsu, “Separation of Two Reactions, Oxidation and Isomerization Catalyzed by Streptomyces Cholesterol Oxidase,” Protein Engineering, Vol. 11, No. 11, 1998, pp. 1075-1081. doi:10.1093/protein/11.11.1075
[90] K. Dai and Y. Nihon, “Cholesterol Oxidase Properties and Application,” Nihon Yukagaka Gakkai, Vol. 48, 1999, pp. 3-14.
[91] J. T. Greenplate, D. R. Corbin and J. P. Purcell, “Cholesterol Oxidase Potent Boll Weevil Larvicidal & Ossalic Suitable for Transgenic Cotton Development,” Proceedings of Beltwide Cotton Conference, New Orleans, 7-10 January 1997, pp. 877-880.
[92] L. Y. A. Petrova, O. I. Glubkovskaya, G. M. Possukhina and A. A. Selezneva, “Study of the Conditions and Properties of Cholesterol Oxidase from Actinomyces lavendulae,” Biokhimiya, Vol. 46, 1981, pp. 1570-1575.
[93] G. A. Shirshova, L. N. Muntayen, T. S. Nazarova and L. E. Nikitin, “Comparative Study of Cholesterol Oxidase Biosynthesis of Two Strains of Streptomyces lavendulae,” Prikladnaya Biokhimiya i Microbiologiy, Vol. 28, 1992, pp. 711-715.
[94] P. Lorendano, G. Giovanni, A. Dorothea, G. Sandro and P. Mirella, “Cholesterol Oxidase from Streptomyces hygrocopicus and Brevibacterium Sterol Effect of Surfactants and Organic Solvents on Activity,” Biotechnology and Applied Biochemistry, Vol. 30, No. 1, 1999, pp. 27-33.
[95] M. Tabatabaei Yazdi, N. Kamranpour, M. Zahraei and K. Agaiepour, “Streptomyces fradiae, a Potent Producer of Cholesterol Oxidase,” Iranian Journal of Science and Technology Transaction, Vol. 10, No. 3, 1999, pp. 151-157.
[96] S. Lartillot and P. Kedziora, “Extracellular Cholesterol Oxidase from Streptomyces Strain,” Preperative Biochemistry and Biotechnology, Vol. 20, 1990, pp. 51-62.
[97] T. Kamei, Y. Takiguchi, H. Suzuki, M. Matsuzaki and S. Nakamura, “Purification and Properties of Streptomyces violascens Origin by Affinity Chromatography on Cholesterol,” Chemical and Pharmaceautical Bulletin, Vol. 26, No. 9, 1978, pp. 2799-2804. doi:10.1248/cpb.26.2799
[98] T. Uwajima, H. Yagi, S. Nakamura and O. Terada, “Isolation and Crystallization of Extracellular 3, 3-Hydroxysteroid Oxidase of Brevibacterium sterolicum novel sp.,” Agricultural and Biological Chemistry, Vol. 37, No. 10, 1973, pp. 2345-2350. doi:10.1271/bbb1961.37.2345
[99] M. Yamashita, M. Toyama, H. Ono, I. Fujii, N. Hirayama and Y. Murooka, “Separation of the Two Reactions, Oxidation and Isomerization, Catalyzed by Streptomyces Cholesterol Oxidase,” Protein Engineering, Vol. 11, No. 11, 1998, pp. 1075-1081. doi:10.1093/protein/11.11.1075
[100] A. Elalami, J. Kerit, A. Filali-Maltouf, J. Boudrant and P. Germain, “Characterization of a Secreted Cholesterol Oxidase from Rhodococcus sp. GKI (CIP105 335),” World Journal of Microbiology and Biotechnology, Vol. 15, No. 5, 1999, pp. 579-585. doi:10.1023/A:1008958008333
[101] R. Linder and A. W. Bernheimer, “Oxidation of Macrophage Membrane Cholesterol by Intracellular Rhodococcus equi,” Veterinary Microbiology, Vol. 56, No. 3-4, 1997, pp. 269-276. doi:10.1016/S0378-1135(97)00095-3
[102] J. G. Terezinha, M. Salva1 Alcina Liserre1, L. Aloísia Moretto1, A. T. Marco Zullo, Gisleine Ventrucci and J. B. Tobias Menezes, “Some Enzymatic Properties of Cholesterol Oxidase Produced by Brevibacterium sp.,” Revista de Microbiologia, Vol. 30, No. 4, 1999, pp. 315-323.
[103] N. Doukyu, K. Shibata, H. Ogino and M. Sagermann, “Cloning, Sequence Analysis, and Expression of a Gene Encoding Chromobacterium sp. DS-1 Cholesterol Oxidase,” Applied Microbiology and Biotechnology, Vol. 82, No. 3, 1989, pp. 479-490. doi:10.1007/s00253-008-1775-9
[104] Y. Lin, J. Fu and X. Song, “Purification and Characterization of an Extracellular Cholesterol Oxidase from a Bordetella Species,” Process Biochemistry, Vol. 45, No. 9, 2010, pp. 1563-1569. doi:10.1016/j.procbio.2010.06.005
[105] F. Volontè, L. Pollegioni, G. Molla, L. Frattini, F. Marinelli and L. Piubelli, “Production of Recombinant Cholesterol Oxidase Containing Covalently Bound FAD in Escherichia coli,” BMC Biotechnology, Vol. 10, 2010, p. 33. doi:10.1186/1472-6750-10-33
[106] Y. Xin, H. Yang, X. Xia, L. Zhang, C. Cheng, G. Mou, J. Shi, Y. Han and W. Wang, “Affinity Purification of a Cholesterol Oxidase Expressed in Escherichia coli,” Journal of Chromatography , Vol. 879, No. 13-14, 2011, pp. 853-858.
[107] H. Tomioka, M. Kagawa and S. Nakamura, “Some Enzymatic Properties of 3β-Hydroxysteroid Oxidase Produced by Streptomyces violascens,” Journal of Biochemistry, Vol. 79, No. 5, 1976, pp. 903-915.
[108] S. De Martinez and C. Green, “The Action of Cholesterol Oxidases on Cholesterol in Vesicles and Micelles,” Biochemical Society Transaction, Vol. 7, No. 5, 1979, pp. 978-979.
[109] M. T.Yazdi, M. Zahraei, K. Aghaepour and N. Kumaranpour, “Purification and Partial Characterization of Cholesterol Oxidase from Streptomyces fradiae,” Enzyme and Microbial Technology, Vol. 18, No. 4-5, 2001, pp. 410-141. doi:10.1016/S0141-0229(00)00337-9
[110] M. T. Lee, W. C. Chen and C. C. Chou, “Medium Improvement by orthogonal designs for Cholesterol Oxidase Production by Rhodococcus equi No. 23,” Process Biochemistry, Vol. 32, No. 8, 1997, pp. 697-703. doi:10.1016/S0032-9592(97)00031-9
[111] Y. Sun, H. Yang and W. Wang, “Improvement of the Thermostability and Enzymatic Activity of Cholesterol Oxidase by Site-Directed Mutagenesis,” Biotechnology Letters, Vol. 33, No. 10, 2011, pp. 2049-2055. doi:10.1007/s10529-011-0669-6
[112] W. H. Liu, M. H. Meng and C. F. Huang, “Purification and Some Properties of Cholesterol Oxidase Produced by an Inducible and a Constitutive Mutant of Arthrobacter simplex,” Agricultural and Biological Chemistry, Vol. 52, No. 2, 1987, pp. 413-418. doi:10.1271/bbb1961.52.413
[113] S. J. Cheetham Peter, P. Dunnill and M. D. Lilly, “The Characterization and Interconversion of Three Forms of Cholesterol Oxidase Extracted from Nocardia rhodochrous,” The Journal of Biochemistry, Vol. 201, No. 3, 1982, pp. 515-521.
[114] K. Arima, M. Nagasawa, M. Bae and G. Tamura, “Microbial Transformation of Sterois Decomposition of Cholesterol by Microorganisms,” Agricutural and Biological Chemistry, Vol. 33, No. 11, 1969, pp. 1636-1643. doi:10.1271/bbb1961.33.1636
[115] M. Nagasawa, M. Bae, G. Tamura and K. Arima, “Microbial Transformation of Sterols. Part 11. Cleavage of Sterol Side Chains by Microorganisms,” Agricutural and Biological Chemistry, Vol. 33, No. 11, 1969, pp. 1644-1650. doi:10.1271/bbb1961.33.1644
[116] K. Watanabe, H. Aihara, Y. Nakagawa, R. Nakamura and T. Sasaki, “Properties of the Purified Extracellular Cholesterol Oxidase from Rhodoccocus equi No 23,” Journal of Agricultural and Food Chemistry, Vol. 37, No. 4, 1989, pp. 1178-1182. doi:10.1021/jf00088a079
[117] C. J. Sih, H. H. Tai and. Y. Tsong, “The Mechanism of Microbial Conversion of cholesterol into 17-Keto Steroids,” Journal of American Chemical Society, Vol. 89, No. 8, 1967, pp. 1957-1958. doi:10.1021/ja00984a039
[118] Z. Shen, D. R. Corbin, J. T. Greenplate, R. J. Grebenok, D. W. Galbraith and J. P. Purcell, “Studies on the Mode of Action of Cholesterol Oxidase on Insect Midgut Membranes,” Archives of Insect Biochemistry and Physiology, Vol. 34, No. 4, 1997, pp. 429-442. doi:10.1002/(SICI)1520-6327(1997)34:4<429::AID-ARCH3>3.0.CO;2-N
[119] J. MacLachlan, A. T. L. Wotherspoon, R. O. Ansell and C. J. W. Brooks, “Cholesterol Oxidase: Sources, Physical Properties and Analytical Applications,” The Journal of Steroid Biochemistry and Molecular Biology, Vol. 72, No. 5, 2000, pp. 169-195. doi:10.1016/S0960-0760(00)00044-3
[120] D. R. Corbin, R. J. Grebenok, T. E. Ohnmeiss, J. T. Greenplate and J. P. Purcell, “Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants,” Plant Physiology, Vol. 126, No. 3, 2001, pp. 1116-1128. doi:10.1104/pp.126.3.1116
[121] J. Navas, B. Gonzalez-Zorn, N. Ladron, P. Garrido and J. A. Vazquez-Boland, “Identification and Mutagenesis by Allelic Exchange of choE, Encoding a Cholesterol Oxidase from the Intracellular Pathogen Rhodococcus equi,” Journal of Bacteriology, Vol. 183, No. 16, 2001, pp. 4796-4805. doi:10.1128/JB.183.16.4796-4805.2001
[122] G. Gadda, G. Wels, L. Pollegioni, S. Zucchelli, D. Ambrosius, M. S. Pilone and S. Ghisla, “Characterization of Cholesterol Oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum,” European Journal of Biochemistry, Vol. 250, No. 2, 1997, pp. 369-376. doi:10.1111/j.1432-1033.1997.0369a.x
[123] National Institutes of Health, “Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults,” NIH Publication No. 1, National Institutes of Health, Bethesda, 2001, p. 3670.
[124] Y. Murooka, T. Ishizaki, O. Nimi and N. Maekawa, “Cloning and Expression of a Streptomyces Cholesterol Oxidase Gene in Streptomyces lividans with Plasmid pIJ702,” Applied and Environmental Microbiology, Vol. 52, No. 6, 1986, pp. 1382-1385.
[125] Li Bo, Wang Wei, Wang Feng-Qing and Wei Dong-Zhi, “Cholesterol Oxidase ChoL Is a Critical Enzyme that Catalyzes the Conversion of Diosgenin to 4-ene-3-keto Steroids in Streptomyces virginiae IBL-14,” Applied Microbiology and Biotechnology, Vol. 85, No. 6, 2010, pp. 1831-1838. doi:10.1007/s00253-009-2188-0
[126] J. T. Greenplate, N. B. Duck, J. C. Pershing and J. P. Purcell, “Cholesterol Oxidase: An Oostatic and Larvicidal Agent Active against the Cotton Boll Weevil, Anthonomus grandis,” Entomologia Experimentalis et Applicata, Vol.74, No. 3, 1995, pp. 253-258. doi:10.1111/j.1570-7458.1995.tb01898.x
[127] A. Brzostek, B. Dziadek, A. Rumijowska-Galewicz, J. Pawelczyk and J. Dziadek, “Cholesterol Oxidase Is Required for Virulence of Mycobacterium tuberculosis,” Federation of European Microbiological Societies Microbiology Letters, Vol. 275, No. 1, 2007, pp. 106-112.
[128] Z, Liao, L. M. Cimakasky, R. Hampton, D. H. Nguyen and J. E. K. Hildreth, “Lipid Raftes and HIV Pathogenesis: Host Membrane Cholesterol Is Required for Infection by HIV Type-I,” AIDS Research and Human Retrovirusis, Vol. 17, No. 11, 2004, pp. 1009-1019.
[129] A. Kumar, R. Malhotra, B. D. Malhotra and S. K. Grover, “CO-immoblization of Cholesterol Oxidase and Horseradish Peroxidase in a Sol-Gel Film,” Analytica Chimica Acta, Vol. 414, No. 1-2, 2000, pp. 43-50. doi:10.1016/S0003-2670(00)00792-3
[130] R. C. Srivastava, R. Sahney, S. Upadhyay and R. L. Gupta, “Membrane Permeability Based Cholesterol Sensor—A New Possibility,” Journal of Membrane Science, Vol. 164, No. 1-2, 2000, pp. 45-49. doi:10.1016/S0376-7388(99)00201-X
[131] R. Foster, J. Cassidy and E. P. O’Donoghue, “Electrochemical Diagnostic Strip Device for Total Cholesterol and Its Subfractions,” Electroanalysis, Vol. 12, No. 9, 2000, pp. 716-721. doi:10.1002/1521-4109(200005)12:9<716::AID-ELAN716>3.0.CO;2-S
[132] S. Brahim, D. A. Nariresingh and G. Elie, “Amperometric Determination of Cholesterol in Serum Using a Biosensor of Cholesterol Oxidase Contained within a Polypyrrole-Hydrogel Membrane,” Analytica Chimica Acta, Vol. 448, No. 1-2, 2001, pp. 27-36. doi:10.1016/S0003-2670(01)01321-6
[133] C. Bongiovanni, T. Ferri, A. Poscia, M. Varalli, R. Santucci and A. Desideri, “An Electrochemical Multienzymatic Biosensor for Determination of Cholesterol,” Bioelectrochemistry, Vol. 54, No. 1, 2001, pp. 17-22. doi:10.1016/S0302-4598(01)00105-2
[134] T. Nakaminami, S. Ito, S. Kuwabata and H. Yoneyama, “Amperometric Determination of Total Cholesterol at Gold Electrode Conalently Modified with Cholesterol Oxidase and Cholesterol Esterase with Use of Thionin as an Electron Mediator, “Analytical Chemistry, Vol. 71, No. 5, 1999, pp. 1068-1076. doi:10.1021/ac9805450
[135] T. Yao and K. Takashima, “Amperometric Biosensor with a Composite Membrane of Sol-Gel Derived Enzyme Film and Electrochemically Generated Poly(1,2-Diamino-benzene) Film,” Biosensors and Bioelectronics, Vol. 13, No. 1, 1998, pp. 67-73. doi:10.1016/S0956-5663(97)00076-6
[136] M. H. Ropers, R. Bilewicz, M. J. Stebe, A. Hamidi, A. Miclo and E. Rogalska, “Fluorinated and Hydrogenated Cubic Phases as Matrices for Immobilization of Cholesterol Oxidase on Electrodes,” Physical Chemistry Chemical Physics, Vol. 3, No. 2, 2001, pp. 240-245. doi:10.1039/b007718f
[137] A. Ono and E. O. Freed, “Plasma Membrane Rafts Play a Critical Role in HIV-1 Assembly and Release,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 24, 2001, pp. 13925-13930. doi:10.1073/pnas.241320298
[138] S. Bavari, C. M. Bosio, E. Wiegand, G. Ruthel, A. B. Will, T. W. Geisbert, M. Hevey, C. Schmaljohn, A. Schmaljohn and M. J. Aman, “Lipid Raft Micro Domains: A Gateway for Compartmentalized Trafficking of Ebola and Marburg Viruses,” Journal of Experimental Medicine, Vol. 195, No. 5, 2002, pp. 593-602. doi:10.1084/jem.20011500
[139] M. K. Ram, P. Bertoncello, H. Ding, S. Paddeu and S. C. Nicolini, “Cholesterol Biosensor Prepared by Layer-by-Layer Technique,” Biosensors and Bioelectronic, Vol. 16, No. 9-12, 2001, pp. 849-856. doi:10.1016/S0956-5663(01)00208-1
[140] Q. C. Shi and Peng Tu Zhi, “A novel Cholesterol Oxidase Biosensor Based on pt-Nanoparticle/Carbon Nanotube Modified Electrode,” Chinese Chemical Letters, Vol. 16, No. 8, 2005, pp. 1081-1084.
[141] J. C. Vidal, R. E. Garcia, J. Espuelas, T. Aramendia and J. R. Castillo, “Comparison of Biosensors Based on Entrapment of Cholesterol Oxidase and Cholesterol Esterase in Electropolymerized Films of Polypyrrole and Diaminonaphthalene Derivatives for Amperometric Determination of Cholesterol,” Analytical and Bioanalytical Chemistry, Vol. 377, No. 2, 2003, pp. 273-280. doi:10.1007/s00216-003-2120-x
[142] P. Norouzi, F. Faridbod, E. Nasli-Esfahani, B. Larijani and M. R. Ganjali, “Cholesterol Biosensor Based on MWCNTs-MnO2 Nanoparticles Using FFT Continuous Cyclic Voltammetry,” International Journal of Electrochemical Science, Vol. 5, 2010, pp. 1008-1017.
[143] M. V. Mendes, E. Recio, N. Antón, S. M. Guerra, J. Santos-Aberturas, J. F. Martín and J. F. Aparicio, “Cholesterol Oxidases Act as signalling proteins for the Biosynthesis of the Polyene Macrolide Pimaricin,” Chemistry & Biology, Vol. 14, No. 3, 2007, pp. 279-290. doi:10.1016/j.chembiol.2007.01.010
[144] P. Daneshgar, P. Norouzi, F. Dousty, M. R. Ganjali and A. A. Moosavi-Movahedi, “Dysprosium Hydroxide Nanowires Modified Electrode for Determination of Rifampicin Drug in Human Urine and Capsules by Adsorptive Square Wave Voltammetry,” Current Pharmaceutical Analysis, Vol. 5, No. 3, 2009, pp. 246-255. doi:10.2174/157341209788922066
[145] N. Doukyu, K. Shibata, H. Ogino and M. Sagermann, “Purification and Characterization of Chromobacterium sp. DS-1 Cholesterol Oxidase with Thermal, Organic Solvent, and Detergent Tolerance,” Applied Microbiology and Biotechnology, Vol. 80, No. 1, 2008, pp. 59-70. doi:10.1007/s00253-008-1526-y
[146] M .R. Pourjavid, P. Norouzi and M. R. Ganjali, “Light lanthanides Determination by Fast Fourier Transformcontinuous Cyclic Voltammetry after Separation by Ion Exchange Chromatography,” International Journal of Electrochemical Science, Vol. 4, 2009, pp. 923-942.
[147] A. G. Smith and C. J. Brooks, “The substrate Specificity and Stereochemistry, Reversibility and Inhibition of the 3-Oxo steroid Delta 4-Delta 5-Isomerase Component of Cholesterol Oxidase,” Biochemical Journal, Vol. 167, No. 1, 1977, pp. 121-129.
[148] G. Del Real, S. Jimenez-Baranda, R. A. Lacalle, E. Mira, P. Lucas, C. Gomez-Mouton, A. C. Carrera, A. C. Martinez and S. Manes, “Blocking of HIV-1 Infection by Targeting CD4 to Nonraft Membrane Domains,” Journal of Experimental Medicine, Vol. 196, No. 3, 2002, pp. 293-301. doi:10.1084/jem.20020308
[149] M. Guyader, E. Kiyokawa, L. Abrami, P. Turelli and D. Trono, “Role for Human Immunodeficiency Virus Type 1 Membrane Cholesterol in Viral Internalization,” Journal of Virology, Vol. 76, No. 20, 2002, pp. 10356-10364. doi:10.1128/JVI.76.20.10356-10364.2002
[150] X. Sun and G. R. Whittaker, “Role for Influenza Virus Envelope Cholesterol in Virus Entry and Infection,” Journal of Virology, Vol. 77, No. 23, 2003, pp. 12543-1255. doi:10.1128/JVI.77.23.12543-12551.2003
[151] M. Takeda, G. P. Leser, C. J. Russell and R. A. Lamb, “Influenza Virus Hemagglutinin Concentrates in Lipid Raft Micro Domains for Efficient Viral Fusion,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 25, 2003, pp. 14610-14617. doi:10.1073/pnas.2235620100
[152] B. Subrata, Y. Shu-Rong, P. S. Blank and J. Zimmerberg, “Cholesterol Promotes Hemifusion and Pore Widening in Membrane Fusion Induced by Influenza Hemagglutinin,” The Journal of General Physiology, Vol. 131, No. 5, 2008, pp. 503-513. doi:10.1085/jgp.200709932
[153] F. Jesus Aparicio and J. F. Mart?n, “Microbial Cholesterol Oxidases: Bioconversion Enzymes or Signal Proteins,” Journal of Royal Society of Chemistry, Vol. 4, No. 8, 2008, pp. 804-809.
[154] L. Pollegioni, L. Piubelli and G. Molla, “Cholesterol Oxidase,” Biotechnology Journal, Vol. 276, 2009, pp. 6857-6870.
[155] D. Ye, J. Lei, W. Li, F. Ge, K. Wu, W. Xu and B. Yong, “Purification and Characterization of Extracellular Cholesterol Oxidase from Enterobactor sp.,” World Journal of Microbiology and Biotechnology, Vol. 24, No. 10, 2008, pp. 2227-2233. doi:10.1007/s11274-008-9734-2
[156] L. Puglielli, L. Friedlich Avi, D. R. Setchell Kenneth, S. Nagano, C. Opazo, A. R. Cherny, K. J. Barnham, J. D. Wade, S. Melov, D. M. Kovacs and A. I. Bush, “Alzheimer Disease β-Amyloid Activity Mimics Cholesterol Oxidase,” Journal of Clinical Investigation, Vol. 115, No. 9, 2005, pp. 2556-2563. doi:10.1172/JCI23610
[157] Q. C. Shi and T. P. Zhi, “A Novel Cholesterol Oxidase Biosensor Based on pt-Nanoparticle/Carbon Nanotube Modified Electrode,” Chinese Chemical Letters, Vol. 16, No. 8, 2005, pp. 1081-1084.
[158] R. Gehlot, K. Sharma, M. Mathew and S. Kumbhat, “Surface Plasmon Resonance Based Biosensor for Label Free Detection of Cholesterol,” Indian Journal of Chemistry, Vol. 47, No. 12, 2008, pp. 1804-1808.
[159] F. Y?ld?r?moglu, F. Arslan, S. Cete and A. Yasar, “Preparation of a Polypyrrole-Polyvinylsulphonate Composite Film Biosensor for Determination of Cholesterol Based on Entrapment of Cholesterol Oxidase,” Sensor, Vol. 9, No. 8, 2009, pp. 6435-6445. doi:10.3390/s90806435
[160] S. ?ete, A. Ya?ar, F. Arslan, “An Amperometric Biosensor for Uric Acid Determination Prepared from Uricase Immobilized in Polypyrrole Film,” Artificial Cells, Blood Substitutes and Biotechnology, Vol. 34, No. 3, 2006, pp. 367-380. doi:10.1080/10731190600684116
[161] S. Cete, A. Yasar and F. Arslan, “An Amperometric Biosensor for Uric Acid Determination Prepared from Uricase Immobilized in Polypyrrole Film,” Artificial Cells, Blood Substitutes and Biotechnology, Vol. 35, No. 3, 2007, pp. 607-620.
[162] F. Arslan, “An Amperometric Biosensor for Uric Acid Determination Prepared from Uricase Immobilized in Polyaniline-Polypyrrole Film,” Sensors, Vol. 8, No. 9, 2008, pp. 5492-5500. doi:10.3390/s8095492
[163] T. Shimidzu, A. Ohtani and K. Honda, “Charge-Controllable Polypyrrole/Polyelectrolyte Composite Membranes. III: Electrochemical Deionization System Constructed by Anion-Exchangeable and Cation-Exchangeable Polypyrrole Electrodes,” Journal of Electroanalytical Chemistry, Vol. 251, No. 2, 1988, pp. 323-337. doi:10.1016/0022-0728(88)85193-3
[164] G. Li, Y. Wang and H. Xu, “A Hydrogen Peroxide Sensor Prepared by Electropolymerization of Pyrrole Based on Screen-Printed Carbon Paste Electrodes,” Sensors, Vol. 7, No. 3, 2007, pp. 239-250. doi:10.3390/s7030239
[165] M. L. Moraes, N. C. de Souza, O. H. Caio, F. Marystela, P. Ubirajara, F. Rodrigues, R. Jr. Antonio, Z. Valtencir and N. O. Osvaldo Jr., “Immobilization of Cholesterol Oxidase in LbL Films and Detection of Cholesterol Using ac Measurements,” Materials Science and Engineering, Vol. 29, No. 2, 2009, pp. 442-447.
[166] M. H. Yang, Y. Yang, H. F. Yang, G. Shen and R. Q. Yu, “Layer-by-layer Self-Assembled Multilayer Films of Carbon Nanotubes and Platinum Nanoparticles with Polyelectrolyte for the Fabrication of Biosensors,” Biomaterials, Vol. 27, No. 2, 2006, pp. 246-255. doi:10.1016/j.biomaterials.2005.05.077
[167] M. M. Kalayil, S. Padmanabhan, I. G. Anantha and L. Kwang-Pill, “Silica-Polyaniline Based Bienzyme Cholesterol Biosensor: Fabrication and Characterization,” Electroanalysis, Vol. 20, No. 20, 2010, pp. 2467-2474.
[168] A. K. Chauhan, A. S. Survase, J. Kishenkumar and S. U. Annapure, “Medium Optimization by Orthogonal Array and Response Surface Methodology for Cholesterol Oxidase Production by Sterptomyces lavendulae NCIM 2499,” Journal of General and Applied Microbiology, Vol. 55, No. 3, 2009, pp. 171-180. doi:10.2323/jgam.55.171
[169] A. Ahmadalinezhad and A. Chen, “High-Performance Electrochemical Biosensor for the Detection of Total Cholesterol,” Biosensors and Bioelectronics, Vol. 26, No. 11, 2011, pp. 4508-4513. doi:10.1016/j.bios.2011.05.011
[170] J. Y. Yang, Y. Li, S. M. Chen and K. C. Lin, “Fabrication of a Cholesterol Biosensor Based on Cholesterol Oxidase and Multiwall Carbon Nanotube Hybrid Composites,” International Journal of Electrochemical Science, Vol. 6, 2011, pp. 2223-2234.
[171] N. Ruechaa, W. Siangprohb and O. Chailapakul, “A Fast and Highly Sensitive Detection of Cholesterol Using Polymer Microfluidic Devices and Amperometric System,” Talanta, Vol. 84, No. 5, 2011, pp. 1323-1328. doi:10.1016/j.talanta.2011.02.040
[172] C. Fang, J. He and Z. Chen, “A Disposable Amperometric Biosensor for Determining Total Cholesterol in Whole Blood,” Sensors and Actuators, Vol. 155, No. 2, 2011, pp. 545-550. doi:10.1016/j.snb.2011.01.005
[173] H. C. Ferraza, J. A. Guimaraesa, T. L. M. Alvesa and C. J. L. Constantino, “Monomolecular Films of Cholesterol Oxidase and S-Layer Proteins,” Applied Surface Science, Vol. 257, No. 15, 2011, pp. 6535-6539. doi:10.1016/j.apsusc.2011.01.143

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.