JBBS> Vol.2 No.2, May 2012

Grape Seed Extract (Vitisvinifera) Alleviate Neurotoxicity and Hepatotoxicity Induced by Lead Acetate in Male Albino Rats

DownloadDownload as PDF (Size:216KB)  HTML    PP. 176-184  
Author(s)    Leave a comment

ABSTRACT

Grape seed extracts (GSE) are very potent antioxidant and exhibit numerous interesting pharmacologic activities, including an antioxidant property, and has been suggested to be of use in treatment of several diseases. The present study has been undertaken to investigate the protective and therapeutic effect of GSE against lead-induced neuro and hepatotoxicity in rat. Male albino rats were divided into six groups: the 1st group, rats were injected daily with saline vehicle and served as negative control, the 2nd group (positive control group), the rats were injected (i.p.) with subacute dose (100 mg/kg b·w/day) of lead acetate (LA). The 3rd group (protective group), the rats were injected (i.p.) with LA (100 mg/kg b·w/day) for 7 days after treatment with GSE (100 mg/kg b·w/day) for 3 weeks. The 4th, 5th and 6th groups (therapeutics groups), rats were injected (i.p.) with subacut dose (100 mg/kg b·w/day) of lead acetate for 7 days, then treated with GSE (100 mg/kg b·w/day) for one, two and three weeks, respectively. The level of norepinephrine (NE), dopamine (DA), serotonin (5-HT) and 5-hydroxyindol acetic acid (5-HIAA) were evaluated in brain regions (cerebellum, brainstem, striatum, cerebral cortex, hypothalamus and hippocampus). The result indicated that the administration of subacute dose of LA (100 mg/kg/day, i.p.) induce a significant decrease in NE, DA, 5-HT and 5-HIAA content in all tested brain regions. Also the obtained data showed significant increase in liver enzymes: serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT) and Lactate dehydrogenase (LDH) level in group 2 (positive control). There is an improvement in neurotransmitters content. Also the obtained data showed significant in- crease in liver enzymes of protective (G3) and therapeutics groups (G4, G5 and G6) which received GSE compared with animal group that received lead acetate (G2). This is may be the presence of proanthocyanidins and procyanidins which have antioxidant and free radical scavenging activities. The result suggests that grape seed extract may prevent lead-induced neurotoxicity and hepatotoxicity.

Cite this paper

A. Waggas, "Grape Seed Extract (Vitisvinifera) Alleviate Neurotoxicity and Hepatotoxicity Induced by Lead Acetate in Male Albino Rats," Journal of Behavioral and Brain Science, Vol. 2 No. 2, 2012, pp. 176-184. doi: 10.4236/jbbs.2012.22021.

References

[1] T. I. Lidsky and J. S. Schneider, “Lead Neurotoxicity in Children: Basic Mechanisms and Clinical Correlates,” Brain, Vol. 126, 2003, pp. 5-19. doi:10.1093/brain/awg014
[2] M. Pande and S. J. S. Flora, “Lead Induced Oxidative Damage and Its Response to Combined Administration of Α-Lipoic Acid and Succimers in Rats,” Toxicology, Vol. 177, 2002, pp. 187-196. doi:10.1016/S0300-483X(02)00223-8
[3] A. Garaza, R. Vega and E. Soto, “Cellular Mechanisms of Lead Neurotoxicity,” Medical Science Monitor, Vol. 12, No. 3, 2006, pp. RA57-65.
[4] V. N. Adonaylo and I. P. Oteiza, “Lead Intoxication Defenses and Oxidative Damage in Rat Brain,” Toxicology, Vol. 135, 1999, pp. 77-85. doi:10.1016/S0300-483X(99)00051-7
[5] D. C. Bellinger, “Very Low Lead Exposure and Children’s Neurodevelopment,” Current Opinion in Pediatrics, Vol. 20, No. 2, 2008, pp. 172-177. doi:10.1097/MOP.0b013e3282f4f97b
[6] H. Gurer and N. Ercal, “Can Antioxidants Be Beneficial in the Treatment of Lead-Poisoning?” Free Radical Biology & Medicine, Vol. 29, No. 10, 2000, pp. 927-954. doi:10.1016/S0891-5849(00)00413-5
[7] Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological Profile for Lead Atlanta,” GA: US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1999.
[8] H. J. Yun, I. Kim, S. Kwon, J. Kang and A. Om, “Protective Effects of Chlorella vulgaris against Lead-Induced Oxidative Stress in Rat Brains,” Journal of Health Science, Vol. 57, No. 3, 2011, pp. 245-254. doi:10.1248/jhs.57.245
[9] J. Yamakoshi, M. Saito, S. Kataoka and M. Kikuchi, “Safety Evaluation of Proanthocyanidin-Rich Extract from Grape Seeds,” Food Chemical Toxicology, Vol. 40, No. 5, 2002, pp. 599-607. doi:10.1016/S0278-6915(02)00006-6
[10] J. Gruenwald, B. A. Brendler and C. Jaenicke, “PDR for herbal medicines,” 3rd Edition, Thomson PDR, Montvale, 2004.
[11] Z. Jia, Z. Song, Y. Zhao, X. Wang and P. Liu, “Grape Seed Proanthocyanidin Extract Protects Human Lens Epithelial Cells from Oxidative Stress via Reducing NF-кB and MAPK Protein Expression,” Molecular Vision, Vol. 17, 2011, pp. 210-217.
[12] S. F. Shenoy, C. L. Keen, S. Kalgaonkar and T. A. Polagruto, “Effect of Grape Seed Extract Consumption on Platelet Function in Postmenopausal Women,” Thrombosis Research, Vol. 121, No. 3, 2007, pp. 431-432. doi:10.1016/j.thromres.2007.09.004
[13] T. Maier, A. Schieber, D. Kammerer and R. Carle, “Residues of Grape (Vitis vinifera L.) Seed Oil Production as a Valuable Source of Phenolic Antioxidants,” Food Chemistry, Vol. 112, 2009, pp. 551-559. doi:10.1016/j.foodchem.2008.06.005
[14] J. Shi, J. Ya and J. E. Pohorly, “Polyphenolics in Grape Seeds. Biochemistry and Functionality,” Journal of Medicinal Food, Vol. 6, No. 4, 2003, pp. 291-299. doi:10.1089/109662003772519831
[15] H. A. H. Khattab, I. Z. A. Abdallah and G. M. Kamel, “Grape Seed Extract Alleviated Reproductive Toxicity Caused by Aluminum Chloride in Male Rats,” Journal of American Science, Vol. 6, No. 12, 2010, pp. 1200-1209.
[16] T. I. Lindsky and J. S. Schneider, “Lead Neurotoxicity in Children: Basic Mechanisms and Clinical Correlates,” Brain, Vol. 126, No. 1, 2003, pp. 5-19. doi:10.1093/brain/awg014
[17] J. Zhao, J. Wang, Y. Chen and R. Agarwal, “Anti-Tumor- Promoting Activity of a Polyphenolic Fraction Isolated from Grape Seeds in the Mouse Skin Two-Stage Initiation-Promotion Protocol and Identification of Procyanidin B5-3-Gallate as the Most Effective Antioxidant Constituent,” Carcinogenesis, Vol. 20, 1999, pp. 1737-1745. doi:10.1093/carcin/20.9.1737
[18] Iranian Herbal Pharmacopoeia, “Tehran: Deputy for Food and Drug,” Iranian Ministry of Health, 2003, pp. 24-25.
[19] M. Balu, P. Sangeetha, G. Murali and C. Panneerselvam, “Modulatory Role of Grape Seed Extract on Age-Related Oxidative DNA Damage in Central Nervous System of Rats,” Brain Res. Bull., Vol. 68, 2006, pp. 469-473. doi:10.1016/j.brainresbull.2005.10.007
[20] M. A. Tangeng, H. Chen, D. K. Lim, A. S. Hume and J. K. Ho, “Excitatory Amino Acids and Lead-Induced Neurotoxicity,” The Journal of Toxicological Science, Vol. 23, No. 2, 1998, pp. 181-183.
[21] S. D. Ray, D. Patel, V. Wong and D. Bagchi, “In Vivo Protection of DNA Damageassociated Apoptotic and Necrotic Cell Deaths during Acetaminophen-Induce Dnephrotoxicity, Amiodarone-Induced Lung Toxicity and Doxorubicin-Induce Dcardiotoxicity by a Novel IH636 Grape Seed Proanthocyanidin Extract,” Research Communications in Molecular Pathology & Pharmacology, 2000, Vol. 107, pp. 137-166.
[22] I. M. El-Ashmawy, A. F. El-Nahas and O. M. Salama, “Grape Seed Extract Preventsgentamicin-Induced Nephrotoxicity and Genotoxicity in Bone Marrow Cells of Mice,” Basic & Clinical Pharmacology & Toxicology, Vol. 99, No. 3, 2006, pp. 230-236. doi:10.1111/j.1742-7843.2006.pto_497.x
[23] J. Glowinski and L. L. Iversen, “Regional Studies of Catecholamines in the Rat Brain. I. The Disposition of [3H] Dopamine and [3H] Dopa in Various Regions of the Brain,” Journal of Neurochemistry, Vol. 13, No. 8, 1966, pp. 655-669. doi:10.1111/j.1471-4159.1966.tb09873.x
[24] C. C. Chang, “A Sensitive Method Forspectrofluorometric Assay of Catecholamines,” International Journal of Neuropharmacology, Vol. 3, No. 6, 1964, pp. 643-649. doi:10.1016/0028-3908(64)90089-9
[25] A. E. Ciarlone, “Further Modification of a Fluoremetric Method for Analyzing Brain Amines,” Microchemical Journal, Vol. 23, No. 1, 1978, pp. 9-12. doi:10.1016/0026-265X(78)90034-6
[26] F. P. Miller, R. H. Cox, W. R. Snodegrass and R. P. Maichel, “Comparative Effect of p-Chlorophenylalanine, p-Chloroamphetamine and p-Chloro-n-Hydroxyindole-3-Acetic Acid,” Biochemical Pharmacology, Vol. 19, No. 2, 1970, pp. 435-442. doi:10.1016/0006-2952(70)90199-1
[27] S. Reitman and S. A. Frankel, “Colorimetric Method for the Determination of Serum Oxaloacetic and Glutamic Pyruvic Transaminases,” American Journal of Clinical Pathology, Vol. 28, 1957, pp. 56-63.
[28] T. H. Khan and S. Sultana, “Antioxidant and Hepatoprotective Potential of Soy Isoflavones against CCl4 Induced Oxidative Stress and Early Tumor Events,” Indo-Global Journal of Pharmaceutical Sciences, Vol. 1, No. 1, 2011, pp. 39-56.
[29] A. Kornberg, “Lactic Dehydrogenase of Muscle. In Methods in Enzymology,” S. P. Colowick, N. O. Kaplan, Eds., Academic Press, New York, 1955, pp. 441-443.
[30] J. M. Lefauconnier, G. Bernard, F. Mellerio, A. Sebille and E. Cesarini, “Lead Distribution in the Nervous System of 8-Month-Old Rats Intoxicated since Birth by Lead,” Experientia, Vol. 39, No. 9, 1983, pp. 1030-1031. doi:10.1007/BF01989787
[31] T. Verina, C. A. Rohde and T. R. Guilarte, “Environmental Lead Exposure during Early Life Alters Granule Cell Neurogenesis and Morphology in the Hippocampus of Young Adult Rats,” Neuroscience, Vol. 145, No. 3, 2007, pp. 1037-1047. doi:10.1016/j.neuroscience.2006.12.040
[32] T. Sanders, Y. Liu, V. Buchner and P. B. Techounwou, “Neurotoxic Effects and Biomarkers of Lead Exposure: A Review,” Reviews on Environmental Health, Vol. 24, No. 1, 2009, pp. 15-45. doi:10.1515/REVEH.2009.24.1.15
[33] H. A. Ruff, M. E. Markowitz, P. E. Bijur and J. F. Rosen, “Relationships among Blood Lead Levels, Iron Deficiency, and Cognitive Development in Tow-Year-Old Children,” Environmental Health Perspectives, Vol. 104, No. 2, 1996, pp. 180-185.
[34] M. R. Basha, W. Wei, M. Brydie, M. Razmiafshari and N. H. Zawia, “Lead Induced Developmental Perturbations in Hippocampal SP1DNA-Binding Are Prevented by Zinc Supplementation,” International Journal of Developmental Neuroscience, Vol. 21, No. 1, 2003, pp. 1-12. doi:10.1016/S0736-5748(02)00137-5
[35] M. E. Gilbert, M. E. Kelly, T. E. Samsam and H. J. Coodman, “Chronic Developmental Lead Exposure Reduces Neurogenesis in Adult Rat Hippocampus but Does Not Impair Spatial Learning,” Toxicological Science, Vol. 86, No. 2, 2005, pp. 365-374. doi:10.1093/toxsci/kfi156
[36] D. A. Gidlow, “Lead Toxicity,” Occupational Medicine, Vol. 54, No. 2, 2004, pp. 76-81. doi:10.1093/occmed/kqh019
[37] S. V. Verstraeten, L. Aimo and P. I. Oteiza, “Aluminum and Lead: Molecular Mechanisms of Brain Toxicity,” Archives of Toxicology, Vol. 82, No. 11, 2008, pp. 789-802. doi:10.1007/s00204-008-0345-3
[38] R. A. Rius, S. Govoni, S. Bergamuschi, L. Luechi and M. Trabucchi, “Mechanisms of the Effect of Lead on Brain Neurotransmission: A Calcium Mediated Action,” Science of the Total Envionment, Vol. 71, No. 3, 1988, pp. 441-448. doi:10.1016/0048-9697(88)90216-1
[39] M. J. Mclentosh, P. A. Meredith, M. R. Moore and A. Goldberg, “Action of Lead on Neurotransmission in Rats,” Xenobiotica, Vol. 19, No.1, 1989, pp. 101-113. doi:10.3109/00498258909034682
[40] K. D. Gill, V. Gupta and R. Sandhair, “Ca2+/Calmodulin-Mediated Neurotransmitter Release and Neurobehavioural Deficits Following Lead Exposure,” Cell Biochemistry & Function, Vol. 21, No. 4, 2003, pp. 345-353. doi:10.1002/cbf.1030
[41] D. A. Nachshen, “Selectivity of the Ca Binding Site in the Synaptosome Ca Channels. Inhibition of Ca Influx by Multivalent Metal Captions,” Journal of Genetic Physiology, Vol. 83, 1984, pp. 941-967. doi:10.1085/jgp.83.6.941
[42] D. J. Minnema, I. A. Michaelson and G. P. Coopers, “Calcium Efflux and Neurotransmitter Release from Rat Hippocampal Synaptosomes Exposed to Lead,” Toxicology and Applied Pharmacology, Vol. 92, No. 3, 1988, pp. 351-357. doi:10.1016/0041-008X(88)90175-5
[43] C. M. Bouton, L. P. Frelin, C. E. Forde, H. A. Godwin and J. Pevsner, “Synaptotagmin I Is a Molecular Target for Lead,” Journal of Neurochemistry, Vol. 76, No. 6, 2001, pp. 1724-1735. doi:10.1046/j.1471-4159.2001.00168.x
[44] F. Ozguner, A. Armagan, A. Koyu, S. Caliskan and H. Koylu, “A Novel Antioxidant Tagent Caffeic Acid Phenethyl Ester (CAPE) Prevents Shock Wave-Induced Renal Tubularoxidative Stress,” Urological Research, Vol. 33, No. 3, 2005, pp. 239-243. doi:10.1007/s00240-005-0470-x
[45] J. Wang, J. Wa and Z. Zhang, “Oxidative Stress in Mouse Brain Exposed to Lead,” The Annals of Occupational Hygiene, Vol. 50, No. 4, 2006, pp. 405-409. doi:10.1093/annhyg/mei079
[46] T. El-Masry, A. M. Emara and N. A. El-Shitany, "Possible Protective Effect of Propolis against Lead-Induced Neurotoxicity in Animal Model,” Journal of Evolutionary Biology Research, Vol. 3, No. 1, 2011, pp. 4-11.
[47] D. Bagchi, M. Bagchi, S. J. Stohs, D. K. Das, S. D. Ray, C. A. Kuszynski, S. S. Joshi and H. G. Pruess, “Free Radicals and Grape Seed Proanthocyanidin Extract: Importance in Human Health and Disease Prevention,” Toxicology, Vol. 148, No. 2-3, 2000, pp. 187-197. doi:10.1016/S0300-483X(00)00210-9
[48] D. Bagchi, S. D. Ray, D. Patel and M. Bagchi, “Protection against Drug- and Chemicalinduced Multiorgan Toxicity by a Novel IH636 Grape Seed Proanthocyanidin Extract,” Drugs under Experimental and Clinical Research, Vol. 27, 2001, pp. 3-15.
[49] Y. Yilmaz and R. T. Toledo, “Health Aspects of Functional Grape Seed Constituents,” Trends in Food Science & Technology, Vol. 15, No. 9, 2004, pp. 422-433. doi:10.1016/j.tifs.2004.04.006
[50] W. G. Li, X. Y. Zhang and Y. J. Wu, “Anti-Inflammatory Effect and Mechanism of Proanthocyanidins from Grape Seeds,” Acta Pharmacologica Sinica, Vol. 22, No. 4, 2001, pp. 1117-1120.
[51] S. D. Ray, H. Parikh, E. Hickey, M. Bagchi and D. Bagchi, “Differential Effects of IH636 Grape Seed Proanthocyanidin Extract and a DNA Repair Modulator 4-Aminobenzamide on Liver Microsomal Cytochrome 4502E1-Dependent Aniline Hydroxylation,” Molecular and Cellular Biochemistry, Vol. 218, No. 1-2, 2001, pp. 27-33. doi:10.1023/A:1007272611915
[52] F. Natella, F. Belelli and V. Gentili, “Grape Seed Proanthocyanidins Prevent Plasma Postprandial Oxidative Stress in Human,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 26, 2002, pp. 7720-7725. doi:10.1021/jf020346o
[53] G. Sharma, A. K. Tyagi, R. P. Singh, D. C. Chan and R. Agarwal, “Synergistic Anti-Cancer Effects of Grape Seed Extract and Conventional Cytotoxic Agent Doxorubicin Against Human Breast Carcinoma Cells,” Breast Cancer Research and Treatment, Vol. 85, No. 1, 2004, pp. 1-12. doi:10.1023/B:BREA.0000020991.55659.59
[54] F. L. Zahang, H. Gao and J. M. Wu, “Selective Inhibition by Grape Seed Proanthocyanidin Extract of Cell Adhesion Molecule Expression Induced Evidenced Glycation End Products in Endolhelial Cell,” Journal of Cardiovascular Pharmacology, Vol. 48, No. 2, 2006, pp. 47-53.
[55] D. Bagchi, A. Garg, R. L. Krohn, M. Bagchi, M. X. Tran and S. J. Stohs, “Oxygen Free Radical Scavenging Abilities of Vitamins C and E, and a Grape Seed Proanthocyanidin Extract in Vitro,” Research in Communications in Molecular Patholology & Pharmacoliogy, Vol. 95, No. 2, 1997, pp. 179-189.
[56] F. Puiggros, N. Llopiz, A. Ardevol, C. Blade, L. Arola and M. L. Salvado, “Grape Seed Procyanidins Prevent Oxidative Injury by Modulating the Expression of Antioxidative Enzyme Systems,” Journal of Agricultural Food Chemistry, Vol. 53, No. 15, 2005, pp. 6080-6086. doi:10.1021/jf050343m
[57] S. Roychowdhury, G. Wolf, G. Keilhoff, D. Bagchi and T. Horn, “Protection of Primary Glial Cells by Grape Seed Proanthocyanidin Extract against Nitrosative/Oxidative Stress,” Nitric Oxide, Vol. 5, No. 2, 2001, pp. 137-149. doi:10.1006/niox.2001.0335
[58] T. Koga, K. Moro, K. Nakamori, J. Yamakoshi, H. Hosoyama, S. Kataoka and T. Ariga, “Increase of Antioxidative Potential of Rat Plasma by Oral Administration of Proanthocyanidin-Rich Extract from Grape Seed,” Journal of Agricultural Food Chemistry, Vol. 47, No. 5, 1999, pp. 1892-1897. doi:10.1021/jf9810517
[59] Y. Feng, Y. M. Liu, J. D. Fratkins and M. H. LeBlance, “Grape Seed Extract Suppresses Lipid Peroxidation and Reduces Hypoxic Ischemic Brain Injury in Neonatal Rats,” Brain Research Bulletin, Vol. 66, No. 2, 2005, pp. 120-127. doi:10.1016/j.brainresbull.2005.04.006
[60] S. Asha Devi, B. K. Sagar Chandrasekar , K. R. Manjulaand N. Ishii, “Grape Seed Proanthocyanidin Lowers Brain Oxidative Stress in Adult and Middle-Aged Rats,” Experimental Gerontology, Vol. 46, No. 11, 2011, pp. 958-964. doi:10.1016/j.exger.2011.08.006
[61] K. Narita, M. Hisamoto, T. Okuda and S. Takeda, “Differential Neuroprotective Activity of Two Different Grape Seed Extracts,” PLoS One, Vol. 6, No. 1, 2011, p. e14575. doi:10.1371/journal.pone.0014575
[62] R. J. Cady, J. J. Hirst and P. L. Durham, “Dietary Grape Seed Polyphenols Repress Neuron and Glia Activation in Trigeminal Ganglion and Trigeminal Nucleus Caudalis,” Molecular Pain, Vol. 10, No. 6, 2010, pp. 1-12.
[63] S. H. Ahn, H. J. Kim, I. Jeong, Y. I. Hong, M. J. Kim, D. J. Rhie, Y. H. Jo, S. J. Hahn and S. H. Yoon, “Grape Seed Proanthocyanidin Extract Inhibits Glutamate-Induced Cell Death through Inhibition of Calcium Signals and Nitric Oxide Formation in Cultured Rat Hippocampal Neurons,” BMC Neuroscience, Vol. 3, 2011, pp. 12-78.
[64] D. S. Herman and M. T. V. Geraldine, “Influence of Minerals on Lead-Induced Alterations in Liver Function in Rats Exposed to Long-Term Lead Exposure,” Journal of Hazardous Materials, Vol. 166, No. 2-3, 2009, pp. 1410-1414. doi:10.1016/j.jhazmat.2008.12.070
[65] A. El-Nekeety, A. A. El-Kady, M. S. Soliman, N. S. Hassan and M. A. Abdel-wahhab, “Protective Effect of Aquilegia Vulgaris (L) against Lead Acetate-Induced Oxidative Stress in Rat,” Food and Chemical Toxicology, Vol. 47, No. 9, 2009, pp. 2209-2215. doi:10.1016/j.fct.2009.06.019
[66] A. Cetin, L. Kaynar, I. Ko?yi?it, S. K. Hacio?lu, R. Saraymen, A. Oztürk, O. Orhan and O. Sa?di?, “The Effect of Grape Seed Extract on Radiation-Induced Oxidative Stress in the Rat Liver,” The Turkish Journal of Gastroenterology, Vol. 19, No. 2, 2008, pp. 92-98.
[67] I. M. El-Ashmawy, S. B. Gad and O. M. Salama, “Grape Seed Extract Prevents a Zathioprine Toxicity in Rats,” Phylotherapy Research, Vol. 24, No. 11, 2010, pp. 1710-1715. doi:10.1002/ptr.3200
[68] M. O. Shin, S. Yoon and J. O. Moon, “The Proanthocyanidins Inhibit Dimethylnitrosamine-Induced Liver Damage in Rats,” Archives of Pharmacal Research, Vol. 33, No. 1, 2010, pp. 167-173. doi:10.1007/s12272-010-2239-1
[69] H. A. El Beshbishy, A. M. Mohamadin, A. A. Nagy and A. B. Abdel-Naim, “Amelioration of Tamoxifen-Induced Liver Injury in Rats by Grape Seed Extract, Black Seed Extract and Curcumin,” Indian Journal of Experimental Biology, Vol. 48, No. 3, 2010, pp. 280-288.
[70] F. V. Pinheiro, V. C. Pimentel, K. S. De Bona, G. Scola, M. Salvador, C. Funchal and M. B. Moretto, “Decrease of Adenosine Deaminase Activity and Increase of the Lipid Peroxidation after Acute Methotrexate Treatment in Young Rats: Protective Effects of Grape Seed Extract,” Cell Biochemistry and Function, Vol. 28, No. 1, 2010, pp. 89-94. doi:10.1002/cbf.1627

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.