Share This Article:

Metabolic syndrome occurrence in university students from México City: The binomium HDL/waist circumference is the major prevalence factor

Full-Text HTML Download Download as PDF (Size:156KB) PP. 177-182
DOI: 10.4236/ojpm.2012.22026    4,712 Downloads   8,180 Views   Citations

ABSTRACT

Objective: Metabolic Syndrome (MetS) is the leading cause to develop type 2 diabetes worldwide. We examined associations of MetS components early in life, and their use as risk factors of acquiring MetS. Method: We used an international definition of MetS. Subjects were categorized into “Healthy”/“Not Healthy”, altered parameters are low HDL-cholesterol, large waist circumference (WC), hypertriacylglycerolemia, hypertension, and hyperglycemia, in 32 combinations (2^5) with two values (altered/not altered). MetS was identified with three or more altered parameters. Results: A total of 3424 students (ages 17 - 24 years) participated in the survey, and 2475 were “Not Healthy” showing at least 1 parameter altered; from them 49.6% showed low blood HDL either alone or combined, 38.2% had altered waist circumference either alone or combined; while 18.1% showed hypertriacylglycero-lemia either alone or combined. Hypertension and hyperglycemia were the lowest in frequency. Conclusion: We propose that the binomium HDL/ Waist Circumference is the main prevalence factor to develop MetS in the asymptomatic young population, followed by hypertriacylglycerolemia which together define MetS; while hypertension and hyperglycemia seem to occur later in MetS.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jiménez-Flores, J. , Murguía-Romero, M. , Mendoza-Ramos, M. , Sigrist-Flores, S. , Rodríguez-Soriano, N. , Ramírez-García, L. , Jesús-Sandoval, R. , Álvarez-Gasca, M. , Orozco, E. , Villalobos-Molina, R. and Méndez-Cruz, A. (2012) Metabolic syndrome occurrence in university students from México City: The binomium HDL/waist circumference is the major prevalence factor. Open Journal of Preventive Medicine, 2, 177-182. doi: 10.4236/ojpm.2012.22026.

References

[1] Ford, E.S., Giles, W.H. and Dietz, W.H. (2002) Prevalence of the metabolic syndrome among US adults. Findings from the Third National Health and Nutrition Examination Survey. The Journal of the American Medical Association, 287, 356-359. doi:10.1001/jama.287.3.356
[2] Misra, A. and Khurana, L. (2008) Obesity and the metabolic syndrome in developing countries. Journal of Clinical Endocrinology and Metabolism, 93, S9-S30. doi:10.1210/jc.2008-1595
[3] Ginsberg, H.R. and MacCallum, P.R. (2009) The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. Journal of the CardioMetabolic Syndrome, 4, 113-119. doi:10.1111/j.1559-4572.2008.00044.x
[4] Cornier, M.A., Dabelea, D. and Hernandez, T. (2008) The metabolic syndrome. Endocrine Reviews, 29, 777-882. doi:10.1210/er.2008-0024
[5] Alberti, K.G., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., Fruchart, J.C., James, W.P., Loria, C.M. and Smith, S.C. Jr. (2009) Harmonizing the metabolic syndrome. A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640-1
[6] Grundy, S.M., Cleeman, J.I., Daniels, S.R., Donato, K.A., Eckel, R.H., Franklin, B.A., Gordon, D.J., Krauss, R.M., Savage, P.J., Smith, S.C. Jr., Spertus, J.A. and Costa, F. (2005) Diagnosis and management of the metabolic syndrome. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 112, 2735-2752. doi:10.1161/CIRCULATIONAHA.105.169404
[7] Cho, L.W. (2011) Metabolic syndrome. Singapore Medical Journal, 52, 779-785.
[8] Ghosh, A. (2011) The metabolic syndrome: A definition dilemma. Cardiovascular Journal of Africa, 22, 295-296.
[9] Reaven, G.M. (2005) The metabolic syndrome: Requiescat-in-pace. Clinical Chemistry, 5, 931-938. doi:10.1373/clinchem.2005.048611
[10] Simmons, R.K., Alberti, K.G.M.M., Gale, E.A.M., Colagiuri, S., Tuomi-letho, J., Qiao, Q., Ramachandran, A., Tajima, N., Braj-kovich Mirchov, I., Ben-Nakhi, A., Reaven, G., Hama Sambo, B., Mendis, S. and Roglic, G. (2011) The metabolic syndrome: useful concept or clinical tool? Report of a WHO expert consultation. Diabetologia, 53, 600-605. doi:10.1007/s00125-009-1620-4
[11] Reaven, G.M. (2011) The metabolic syndrome: Time to get off the merry-go-round? Journal of Internal Medicine, 269, 127-136. doi:10.1111/j.1365-2796.2010.02325.x
[12] Johnson, W., Kroon, J. and Greenway, F. (2009) Prevalence of risk factors for metabolic syndrome in adolescents. National health and nutrition examination survey (NHANES), 2001-2006. Archives of Pediatric and Adolescent Medicine, 163, 371- 377. doi:10.1001/archpediatrics.2009.3
[13] Kahn, R., Buse, J., Ferrannini, E. and Stern, M. (2005) The metabolic syndrome: Time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia, 48, 1684-1699. doi:10.1007/s00125-005-1876-2
[14] Mente, A., Yusuf, S., Islam, S., McQueen, M.J., Tanom-sup, S., Onen, C.L., Rangarajan, S., Gerstein, H.C. and Anand, S.S. (2010) INTERHEART investigators, metabolic syndrome and risk of acute myocardial infarction a case-control study of 26,903 Subjects from 52 countries. Journal of American College of Cardiology, 55, 2390-2398. doi:10.1016/j.jacc.2009.12.053
[15] Brand?o, A.P., Brand?o, A.A., de Magalh?es, M.E. and Pozzan, R. (2008) Management of metabolic syndrome in young population. American Journal of Therapeutics, 15, 356-361. doi:10.1097/MJT.0b013e318164c107
[16] Cook, S., Weitzman, M. and Auinger, P. (2003) Preva- lence of a metabolic syndrome phenotype in adolescents. Findings from the Third National Health and Nutrition Examination Survey, 1988-1994. Archives of Pediatric and Adolescent Medicine, 157, 821-827. doi:10.1001/archpedi.157.8.821
[17] Aguilar-Salinas, C.A., Olaiz, G. and Valles, V. (2001) High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. Journal of Lipid Research, 42, 1298-1307.
[18] Flores-Dorantes, T., Arellano-Campos, O., Posadas-Sánchez, R., Villar-real-Molina, T., Medina-Urrutia, A., Romero-Hidalgo, S., Yescas-Gómez, P., Pérez-Méndez, O., Jorge-Galarza, E., Tusié-Luna, T., Villalobos-Comparán, L., Jacorbo-Albavera, L., Villamil-Ramírez, H., López-Contreras, B.E., Aguilar-Salinas, C.A., Posadas-Romero, C. and Canizales-Quinteros, S. (2010) Association of R230C ABCA1 gene variant with low HDL-C levels and abnormal HDL subclass distribution in Mexican school-aged children. Clinica Chi
[19] Al-Gayyar, M.M., Shams, M.E. and Barakat, E.A. (2012) Fish oil improves lipid metabolism and ameliorates inflammation in patients with metabolic syndrome: Impact of nonalcoholic fatty liver disease. Pharmaceutical Biology, 50, 297-303. doi:10.3109/13880209.2011.604088
[20] Perez-Martinez, P., Garcia-Rios, A., Delgado-Lista, J., Perez-Jimenez, F. and Lopez-Miranda, J. (2011) Metabolic syndrome: Evidences for a personalized nutrition. Molecular Nutrition & Food Research, 56, 67-76. doi:10.1002/mnfr.201100531
[21] Guevara-Cruz, M., Tovar, A.R., Aguilar-Salinas, C.A., Medina-Vera, I., Gil-Zenteno, L., Hernández-Viveros, I., López-Romero, P., Ordaz-Nava, G., Canizales-Quinteros, S., Guillen Pineda, L.E. and Torres, N. (2012) A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. Journal of Nutrition, 142, 64-69. doi:10.3945/jn.111.147447
[22] Das, M., Pal, S. and Ghosh, A. (2011) Prevalence of the metabolic syndrome in people of Asian Indian origin: Outcomes by definitions. Cardiovascular Journal of Africa, 22, 303-305. doi:10.5830/CVJA-2010-070
[23] Murguía-Romero, M., Méndez-Cruz, R., Villalobos-Molina, R., Rodríguez-Soriano, N.Y., González-Dalhaus, E. and Jiménez-Flores, R. (2010) Knowledge-based system for diagnosis of metabolic alterations in undergraduate students. In: Hernández-Aguirre, A. and Reyes-Garcia, C.A. Eds., Advances in Artificial Intelligence. MICAI Part I. Lecture Notes on Artificial Intelligence 6437, Springer-Verlag, Berlin/Heidelberg, 467-476.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.