Neural Activation by Milnacipran and Memory Extinction

Abstract

Background: Among neurotransmitter influencing memory formation, the noradrenergic system has been recognized as an important system. Memory formation involves various regions including the prefrontal cortex, hippocampus, amygdala and septum. Method: We investigated the effects of milnacipran on passive avoidance task and evaluated Fos counting in the prefrontal cortex, hippocampus, septum, amygdala and nucleus accumbens. Results: The milnacipran-treated rats (20 mg/kg, 4 days) showed a significant decrease in the number of Fos-immunoreactive cells in the infralimbic portion of prefrontal cortex, the shell portion of nucleus accumbens and the CA1 region of hippocampus, but a significant increase in the Fos counts in the lateral septum with no changes in the Fos counts in the striatum and amygdala. The milnacipran-treated rats showed amelioration in memory extinction (although not statistically significant), but not in memory acquisition and consolidation in the passive avoidance test. Conclusion: The differential activation of the brain regions might be possible sites for ameliorating memory extinction as well as antidepressant effects.

Share and Cite:

H. Ishida, M. Iwata, Y. Shirayama and K. Muneoka, "Neural Activation by Milnacipran and Memory Extinction," Journal of Behavioral and Brain Science, Vol. 2 No. 2, 2012, pp. 141-145. doi: 10.4236/jbbs.2012.22016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Ellwart, M. Pinck and E. S. Becker, “Selective Memory and Memory Deficits in Depressed Inpatients,” De- pression and Anxiety, Vol. 17, No. 4, 2003, pp. 197-206.
[2] M. C. Arenas, C. Vinader-Caerols, S. Monleon, A. J. Martos, E. Everss, A.Ferrer-Ano and A. Parra, “Are the Effects of the Antidepressant Amitriptyline, Maprotiline, and Fluoxetine on Inhibitory Avoidance State-Dependent?” Bahavioral Brain Research, Vol. 166, No. 1, 2006, pp. 150-158. doi:10.1016/j.bbr.2005.07.020
[3] S. Monleon, A. Urquiza, M. C. Arenas, C. Vinader-Caerols and A. Parra, “Chronic Administration of Fluoxetine Impairs Inhibitory Avoidance in Male but Not Female Mice,” Behavioral Brain Research, Vol. 136, No. 2, 2002, pp. 483-488. doi:10.1016/S0166-4328(02)00194-8
[4] P. Pereira, J. Gianesini, C. da Silva Barbosa, G.F. Cassol, R. G. Von Borowski, V. F. S. Kahl, S. E. Cappelari and J. N. Picada, “Neurobehavioral and Genotoxic Parameters of Duloxetine in Mice Using the Inhibitory Avoidance Task and Comet Assay As Experimental Models,” Pharmacological Research, Vol. 59, No. 1, 2009, pp. 57-61. doi:10.1016/j.phrs.2008.09.014
[5] S. Monleon, C. Vinader-Caerols, M. C. Arenas and A. Parra, “Antidepressant Drugs and Memory: Insights from Animal Studies,” European Neuropsychopharmacology, Vol. 18, No. 4, 2008, pp. 235-248. doi:10.1016/j.euroneuro.2007.07.001
[6] D. Mochizuki, R. Tsujita, S. Yamada, K. Kawasaki, Y. Otsuka, S. Hashimoto, T. Hattori, Y. Kitamura and N. Miki, “Neurochemical and Behavioural Characterization of Milnacipran, a Serotonin and Noradrenaline Reuptake Inhibitor in Rats,” Psychopharmacology, Vol. 162, No. 3, 2002, pp. 323-332. doi:10.1007/s00213-002-1111-5
[7] Y. Kitaichi, T. Inoue, T. Izumi, S. Nakagawa, A. Kato and T. Koyama, “Subchronic Milnacipran Treatment Increases Basal Extracellular Noradrenaline Concentrations in the Medial Prefrontal Cortex of Rats,” European Journal of Pharmacology, Vol. 520, No. 1, 2005, pp. 37-42. doi:10.1016/j.ejphar.2005.08.004
[8] K. Muneoka, Y. Shirayama, M. Takigawa and S. Shioda, “Brain Region-Specific Effects of Short-Term Treatment with Duloxetine, Venlafaxine, Milnacipran and Sertraline on Monoamine Metabolism in Rats,” Neurochemical Research, Vol. 34, No. 3, 2009, pp. 542-555. doi:10.1007/s11064-008-9818-2
[9] O. Izquierdo and J. H. Medina, “Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connections to Activity in Other Brain Structure,” Neurobiology of Learning and Memory, Vol. 68, No. 3, 1997, pp. 285-316. doi:10.1006/nlme.1997.3799
[10] J. P. Reneric and I. Lucki, “Antidepressant Behavioral Effects by Dual Inhibition of Monoamine Reuptake in the Rat Forced Swimming Test,” Psychopharmacology, Vol. 136, No. 2, 1998, pp.190-197. doi:10.1007/s002130050555
[11] M. R. M. Vianna, G. Szapiro, J. L. McGaugh, J. H. Medina and I. Izquierdo, “Retrieval of Memory for Fear-Motivated Training Initiates Extinction Requiring Protein Synthesis in the Rat Hippocampus,” Proceeding of National Academy Science, Vol. 98, No. 21, 2001, pp. 12251-12252.
[12] M. Iwata, Y. Shirayama, H. Ishida and R. Kawahara, “Hippocampal Synapsin 1, Growth-Associated Protein-43, and Microtuble-Associated Protein-2 Immunoreactivity in Learned Helplessness Rats and Antidepressant-Treated rats,” Neuroscience, Vol. 141, No. 3, 2006, pp. 1301-1313. doi:10.1016/j.neuroscience.2006.04.060
[13] M. Sairanen, O. F. O’Leary, J. E. Knuuttila and E. Castren, “Chronic Antidepressant Treatment Selectively Increases Expression of Plasticity-Related Proteins in the Hippocampus and Medial Prefrontal Cortex of the Rat,” Neuroscience, Vol. 144, No. 1, 2007, pp. 368-374. doi:10.1016/j.neuroscience.2006.08.069
[14] C. H. Beck, “Acute Treatment with Antidepressant Drugs Selectively Increases the Expression of c-Fos in the Rat Brain,” Journal of Psychiatry and Neuroscience, Vol. 20, No. 5, 1995, pp. 25-32.
[15] M. Morelli, A. Pinna, S. Ruii and M. Del Zompo, “Induction of Fos-Like Immunoreactivity in the Central Extended Amygdala by Antidepressant Drugs,” Synapse, Vol. 31, No. 1, 1999, pp. 1-4. doi:10.1002/(SICI)1098-2396(199901)31:1<1::AID-SYN1>3.0.CO;2-S
[16] H. J. Groenewegen, H. W. Berendse, J. G. Wolters and A. H. Lohman, “The Anatomical Relationship of the Prefrontal Cortex with the Striatopallidal System, the Thalamus and the Amygdala: Evidence for a Parallel Organization,” Progress Brain Research, Vol. 85, 1990, pp. 95-116. doi:10.1016/S0079-6123(08)62677-1
[17] Y. Shirayama and S. Chaki, “Neurochemistry of the Nucleus Accumbens and Its Relevance to Depression and Antidepressant Action in Rodents,” Current Neurophar- macology, Vol. 4, No. 4, 2006, pp. 277-291. doi:10.2174/157015906778520773
[18] M. R. Milad, I. Vidal-Gonzalez and G. J. Quirk, “Electrical Stimulation of Medical Prefrontal Cortex Reduces Conditioned Fear in a Temporally Specific Manner,” Behavioral Neuroscience, Vol. 118, No. 2, 2004, pp. 389-394. doi:10.1037/0735-7044.118.2.389
[19] S. Morinobu, H. Strausbaugh, R. Terwilliger and R. S. Duman, “Regulation of c-Fos and NGF1-A by Antidepressant Treatments,” Synapse, Vol. 25, No. 4, 1997, pp. 313-320. doi:10.1002/(SICI)1098-2396(199704)25:4<313::AID-SYN1>3.0.CO;2-D
[20] T. J. Shors, T. B. Seib, S. Levine and R. F. Thompson, “Inescapable versus Escapable Shock Modulates Long-Term Potentiation in the Rat Hippocampus,” Science, Vol. 244, No. 4901, 1989, pp. 224-226. doi:10.1126/science.2704997
[21] K. Tachibana, M. Matsumoto, H. Togashi, T. Kojima, Y. Morimoto, O. Kemmotsu and M. Yoshioka, “Milnacipran, a Serotonin and Norepinephrine Reuptake Inhibitor, Suppresses Long-Term Potentiation in the Rat Hippocampal CA1 Field via 5-HT1A Receptors and Alpha 1-Adrenoceptors,” Neuroscience Letter, Vol. 357, No. 2, 2004, pp. 91-94. doi:10.1016/j.neulet.2003.11.016
[22] I. Walaas and F. Fonnum, “Biochemical Evidence for Glutamate as a Transmitter in Hippocampal Efferents to the Basal Forebrain and Hypothalamus in the Rat Brain,” Neuroscience, Vol. 5, 1980, pp. 1691-1698. doi:10.1016/0306-4522(80)90088-3
[23] T. P. Sheehan, R. A. Chambers and D. S. Russell, “Regulation of Affect by the Lateral Septum: Implications for Neuropsychiatry,” Brain Research Review, Vol. 46, No. 1, 2004, pp. 71-117. doi:10.1016/j.brainresrev.2004.04.009
[24] G. E. Duncan, D. J. Knapp, K. B. Johanson and G. R. Breese, “Functional Classification of Antidepressants Based on Antagonism of Swim Stress-Induced Fos-Like Immunoreacitivity,” Journal of Pharmacology and Experimental Therapeutica, Vol. 277, 1996, pp. 1076-1089.
[25] M. Beekman, C. Flachskamm and A. C. E. Linthorst, “Effects of Exposure to a Predator on Behaviour and Se- rotonergic Neurotransmission in Different Brain Regions of C57bl/6N Mice,” European Journal of Neuroscience, Vol. 21, No. 10, 2005, pp. 2825-2836. doi:10.1111/j.1460-9568.2005.04107.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.