Effect of Sintering Temperature on Structural and Magnetic Properties of Ni0.55Zn0.45Fe2O4 Ferrites

Abstract

The effect of frequency and sintering temperature on initial permeability of Ni0.55Zn0.45Fe2O4 ferrites have been studied by using an impedance analyzer. The samples were prepared by conventional double sintering ceramic technique using oxide nanoparticles of grain size 30 - 50 nm. Single phase spinal structure has been confirmed for the prepared samples by X-ray diffraction. As the sintering temperatures increase from 1160℃ to 1300℃, the permeability gradually increases. The increase of permeability is ascribed to the increase of density and grain size. Grain size is expected to grow with the increase of sintering temperature. Ferrites with large average grain size posses higher initial permeability. The Curie temperatures determined from temperature dependence of permeability of the samples sintered at different temperatures are found to be Tc = (321 ± 1)℃ and independent of sintering temperature. At Ts = 1300℃, Tc is found to increase substantially which can be explained by the fact that Zn has evaporated from the surface layer.

Share and Cite:

R. Islam, M. Obaidur Rahman, M. Abdul Hakim, D. Kumar Saha, S. Saiduzzaman, S. Noor and M. Al-Mamun, "Effect of Sintering Temperature on Structural and Magnetic Properties of Ni0.55Zn0.45Fe2O4 Ferrites," Materials Sciences and Applications, Vol. 3 No. 5, 2012, pp. 326-331. doi: 10.4236/msa.2012.35048.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Li, J. P. Zhao and J. C. Han, “Self-Propagation High Temperature Synthesis and Magnetic Properties of Ni0.35 Zn0.65Fe2O4 Powder,” Bulletin of Materials Science, Vol. 25, No. 4, 2002, pp. 263-266. doi:10.1007/BF02704117
[2] J. Smith and H. P. J. Wijn, “Ferrites,” John Wiley and Sons, New York, 1995.
[3] B. D. Cullity and C. D. Graham, “Introduction to Magnetic Materials,” John Wiley and Sons, Hoboken, 2009.
[4] E. Olsen and J. Thonstad, “Nickel Ferrites as Inert Anodes in Aluminium Electrolysis: Part I Material Fabrication and Perliminary Testing,” Journal of Applied Electrochemistry, Vol. 29, No. 3, 1999, pp. 293-299. doi:10.1023/A:1003460220418
[5] M. M. Barakat, M. A. Henaish, S. A. Olofa and A.Tawfik, “Sintering Behaviour of the Spinel Ferrites System Ni0.65 Zn0.35Fe2-xCuxO4,” Journal of Thermal Analysis And Calorimetry, Vol. 37, No. 2, 1991, pp. 241-248. doi:10.1007/BF02055926
[6] O. F. Caltun, L. Spinu, Al Staneu, “Structural and Magnetic Properties of Ni-Zn-Cu Ferrites Sintered at Different Temperatures,” Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 2, 2002, pp. 337-340.
[7] A. M. Kumar, M. C. Verma, C. L. Dube, K. H. Rao and S. C. Kashyap, “Development of Ni-Zn Nano Ferrite Core Material with Improved Saturation Magnitizition and DC Resistivity,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 14, 2008, pp. 1995-2000. doi:10.1016/j.jmmm.2008.02.129
[8] S. T. Mahmud, A. K. M. Akther Hossain, A. K. M. A. Hakim, M. Seki, T. Kawai and H. Tabata, “Influence of Microstructure on the Complex Permeability of Spinel Type Ni-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 305, No. 1, 2006, pp. 269-274. doi:10.1016/j.jmmm.2006.01.012
[9] G. F. Dionne and R. G. West, “Magnetic and Dielectric Properties of the Spinel Ferrite System Ni0.65Zn0.35Fe2-x MnxO4,” Journal of Applied Physics, Vol. 61, No. 8, 1987, pp. 3838-3910. doi:10.1063/1.338623
[10] A. K. M. A. Hossain, S. T. Mahmud, M. Seki, T. Kawai and H. Tabata, “Structural, Electric Transport and Magnetic Properties of Ni1-xZnxFe2O4,” Journal of Magnetism and Magnetic Materials, Vol. 312, No. 1, 2007, pp. 210-219. doi:10.1016/j.jmmm.2006.09.030
[11] B. P. Rao, A. M. Kumar, K. H. Rao, Y. L. N. Murthy, O. F. Caltun, I. Dumitru and L. Spinu, “Synthesis and Magnetic Studies of Ni-Zn Ferrite Nanoparticles,” Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 5, 2006, pp. 1703-1705.
[12] S. Zahi, “Synthesis, Permeability and Microstructure of the Optimal Nickel-Zinc Ferrites by Sol-Gel Route,” Journal of Electromagnetic Analysis and Applications, Vol. 2, No. 1, 2010, pp. 56-62. doi:10.4236/jemaa.2010.21009
[13] S. Akhter, D. P. Paul, Md. A. Hakim, D. K. Saha, Md. Al-Mamun and A. Parveen, “Synthesis, Structural and Physical Properties of Cu1-xZnxFe2O4 Ferrites,” Materials Science and Applications, Vol. 2, 2011, pp. 1675-1681. doi:10.4236/msa.2011.211223
[14] A. Verma, T. C. Goel and R. G. Mendiratta, “Frequency Variation of Initial Permeability of Ni-Zn Ferrites Prepared by the Citrate Precursor Method,” Journal of Magnetism and Magnetic Materials, Vol. 210, No. 1-3, 2000, pp. 274-278.
[15] M. Sorescu, L. Diamandescu, R. Peelamedu, R. Roy and P. Yadoji, “Structural and Magnetic Properties of Ni-Zn Ferrites Prepared by Microwave Sintering,” Journal of Magnetism and Magnetic Materials, Vol. 279, No. 2-3, 2004, pp. 195-201. doi:10.1016/j.jmmm.2004.01.079
[16] S. R. Murthy, “A Study of Ultrasonic Velocity and Attenuation on Polycrystalline Ni-Zn Ferrites,” Bulletin of Materials Science, Vol. 24, No. 6, 2001, pp. 611-616. doi:10.1007/BF02704009
[17] J. L. Snoek, “Dispersion and Absorption in Magnetic Ferrites at Frequencies above one Mc/s,” Physica, Vol. 14, No. 4, 1948, pp. 207-217. doi:10.1016/0031-8914(48)90038-X
[18] Z.-H. Yang, Z.-Q. Gong, H.-X. Li, Y.-T. Ma and Y.-F. Yang, “Synthesis of Ni-Zn Ferrites and Its Microstructure and Magnetic Properties,” Journal of Central South University of Technology, Vol. 13, No. 6, 2006, pp. 618-623. doi:10.1007/s11771-006-0004-x
[19] M. Jalaly, M. H. Enayati, P. Kameli and F. Karimzadeh, “Effect of Composition on Structural and Magnetic Properties of Nanocrystalline Ball Milled Ni1-xZnxFe2O4 Ferrites,” Physica B: Condensed Matter, Vol. 405. No. 2, 2010, pp. 507-512. doi:10.1016/j.physb.2009.09.044

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.