Self-Assembled Dextrin Nanogel as Curcumin Delivery System

Abstract

Curcumin is a natural polyphenol with anti-oxidative, anti-inflammatory and anti-cancer properties. Its therapeutic potential is substantially hindered by the rather low water solubility and bioavailability, hence the need for suitable carriers. In this study, we show that self-assembled nanogels obtained from hydrophobically modified dextrin are effective curcumin nanocarriers. The stability and loading efficiency of curcumin-loaded nanogel depends on the nanogel/curcumin ratio. Higher stability of the formulation is achieved in water than in PBS buffer, as evaluated by dynamic light scattering and fluorescence measurements. The in vitro release profile, using sink conditions, indicates that dextrin nanogel may perform as a suitable carrier for the controlled release of curcumin. Biological activity of curcumin-loaded nanogel in HeLa cell cultures was assessed using the MTS assay.

Share and Cite:

C. Gonçalves, P. Pereira, P. Schellenberg, P. J. Coutinho and F. M. Gama, "Self-Assembled Dextrin Nanogel as Curcumin Delivery System," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 2, 2012, pp. 178-184. doi: 10.4236/jbnb.2012.32024.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. Goel, A. B. Kunnumakkara and B. B. Aggarwal, “Curcumin as ‘Curecumin’: From Kitchen to Clinic,” Biochemical Pharmacology, Vol. 75, No. 4, 2008, pp. 787-809. doi:10.1016/j.bcp.2007.08.016
[2] M. Lo-pez-Lazaro, “Anticancer and Carcinogenic Properties of Curcumin: Considerations for Its Clinical Development as a Cancer Chemopreventive and Chemotherapeutic Agent,” Molecular Nutrition & Food Research, Vol. 52, No. S1, 2008, pp. S103-127. doi:10.1002/mnfr.200700238
[3] E. Tourkina, P. Gooz, J. C. Oates, A. Ludwicka-Bradley, R. M. Silver and S. Hoffman, “Curcumin-Induced Apoptosis in Scleroderma Lung Fibroblasts: Role of Protein Kinase C Epsilon,” American Journal of Respiratory Cell and Molecular Biology, Vol. 31, No. 1, 2004, pp. 28-35. doi:10.1165/rcmb.2003-0354OC
[4] A. Kunwar, A. Barik, R. Pandey and K. I. Priyadarsini, “Transport of Liposomal and Albumin Loaded Curcumin to Living Cells: An Absorption and Fluorescence Spectroscopic Study,” Biochimica et Biophysica Acta, Vol. 1760, No. 10, 2006, pp. 1513-1520. doi:10.1016/j.bbagen.2006.06.012
[5] G. P. Lim, T. Chu, F. Yang, W. Beech, S. A. Frautschy and G. M. Cole, “The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse,” The Journal of Neuroscience, Vol. 21, No. 21, 2001, pp. 8370-8377.
[6] M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin and A. H. Conney, “Inhibitory Effects of Curcumin on in Vitro Lipoxygenase and Cyclooxygenase Activities in Mouse Epidermis,” Cancer Research, Vol. 51, No. 3, 1991, pp. 813-819.
[7] M. M. Chan, H. I. Huang, M. R. Fenton and D. Fong, “In Vivo Inhibition of Nitric Oxide Synthase Gene Expression by Curcumin, a Cancer Preventive Natural Product with Anti-Inflammatory Properties,” Biochemical Pharmacology, Vol. 55, No. 12, 1998, pp. 1955-1962. doi:10.1016/S0006-2952(98)00114-2
[8] G. Shoba, D. Joy,T. Joseph, M. Majeed, R. Rajendran and P. S. Srinivas, “Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers,” Planta Medica, Vol. 64, No. 4, 1998, pp. 353-356. doi:10.1055/s-2006-957450
[9] C. Goncalves, J. A. Martins and F. M. Gama, “Self-Assembled Nanoparticles of dextrin Substituted with Hexa- decanethiol,” Bio-macromolecules, Vol. 8, No. 2, 2007, pp. 392-398. doi:10.1021/bm060993e
[10] C. Gon?alves and F. M. Gama, “Characterization of the Self-Assembly Process of hydrophobically Modified Dextrin,” European Polymer Journal, Vol. 44, No. 11, 2008, pp. 3529-3534. doi:10.1016/j.eurpolymj.2008.08.034
[11] M. Janado, Y. Yano, H. Nishida and T. Nishida, “Effect of Salt on the Intermolecular and Intramolecular Hydro- phobic Interac-tions of Macromolecules,” Journal of Solution Chemistry, Vol. 15, No. 10, 1986, pp. 839-850. doi:10.1007/BF00646091
[12] L. G. Wang and R. H. Yoon, “Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate: Effect of Electrolyte,” Langmuir, Vol. 20, No. 26, 2004, pp. 11457-11464. doi:10.1021/la048672g
[13] J. Shaikh, D. D. Ankola, V. Beniwal, D. Singh and M. N. Kumar, “Nanoparticle Encapsulation Improves Oral Bio-availability of Curcumin by at Least 9-Fold When Compared to Curcumin Administered with Piperine as Absorption Enhancer,” European Journal of Pharmaceutical Sciences, Vol. 37, No. 3-4, 2009, pp. 223-230. doi:10.1016/j.ejps.2009.02.019
[14] R. K. Das, N. Kasoju and U. Bora, “Encapsulation of Curcumin in Alginate-Chitosan-Pluronic Composite Nanoparticles for Delivery to Cancer Cells,” Nanomedicine, Vol. 6, No. 1, 2009, pp. 153-160. doi:10.1016/j.nano.2009.05.009
[15] R. Mulik, K. Mahadik and A. Paradkar, “Development of Curcuminoids Loaded Poly(Butyl) Cyanoacrylate Nanoparticles: Physicochemical Characterization and Stability study,” European Journal of Pharmaceutical Sciences, Vol. 37, No. 3-4, 2009, pp. 395-404. doi:10.1016/j.ejps.2009.03.009
[16] C. Gon?alves, E. Torrado, T. Martins, P. Pereira, J. Pedrosa and M. Gama, “Dextrin Nanoparticles: Studies on the Interaction with Murine Macrophages and Blood Clearance,” Colloids and Surfaces B: Biointerfaces, Vol. 75, No. 2, 2010, pp. 483-489. doi:10.1016/j.colsurfb.2009.09.024
[17] A. Sahu, N. Kasoju and U. Bora, “Fluorescence Study of the Curcumin-Casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells,” Biomacromolecules, Vol. 9, No. 10, 2008, pp. 2905-2912. doi:10.1021/bm800683f

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.