Recent Progress in Preparation of Superhydrophobic Surfaces: A Review

Abstract

In nature, water-repellency (superhydrophobicity) is found, besides in plants, in insects and bird feathers. The booming field of biomimetics allows one to mimic nature to develop nanomaterials, nanodevices, and processes which offer desirable properties. Biomimetics means mimicking biology or nature. Inspired from nature, which reveals excellent superhydrophobicity, researchers have recently developed and implemented biomimetic superhydrophobic surfaces in a variety of smart and simple ways. Superhydrophobicity is an effect where surface roughness and chemical composition combine to generate unusual water repellent surface, causing water to bounce and roll off the surface. This review article provides the overview of the recent progress (within the last four years) in the synthesis, characterization, theoretical modelling, and applications of superhydrophobic surfaces, with focus on the different techniques used and how they have developed over the years. At last, the difficulties related to implementation of superhydrophobic surfaces in day to day life are discussed. This review can find interesting for students, scientists and industrial companies working especially on superhydrophobic surfaces.

Share and Cite:

S. Subhash Latthe, A. Basavraj Gurav, C. Shridhar Maruti and R. Shrikant Vhatkar, "Recent Progress in Preparation of Superhydrophobic Surfaces: A Review," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 2, 2012, pp. 76-94. doi: 10.4236/jsemat.2012.22014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Bhushan and Y. C. Jung, “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhe-sion, and Drag Reduction,” Progress in Materials Science, Vol. 56, No. 1, 2011, pp. 1-108. doi:10.1016/j.pmatsci.2010.04.003
[2] T. Wagner, C. Neinhuis and W. Barthlott, “Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures,” Acta Zoologica, Vol. 77, No. 3, 1996, pp. 213-225. doi:10.1111/j.1463-6395.1996.tb01265.x
[3] A. R. Parker and C. R. Lawrence, “Water Capture from Desert Fogs by a Namibian Beetle,” Nature, Vol. 414, No. 6859, 2001, pp. 33-34. doi:10.1038/35102108
[4] X. Gao and L. Jiang, “Biophysics: Water-Repellent Legs of Water Striders,” Nature, Vol. 432, No. 7013, 2004, p. 36. doi:10.1038/432036a
[5] D. Byun, J. Hong, Saputra, J. H. Ko, Y. J. Lee, H. C. Park, B. K. Byun and J. R. Lukes, “Wetting Characteristics of Insect Wing Surfaces,” Journal of Bionic Engineering, Vol. 6, No. 1, 2009, pp. 63-70. doi:10.1016/S1672-6529(08)60092-X
[6] K. Koch, B. Bhushan and W. Barthlott, “Diversity of Structure, Morphology and Wetting of Plant Surfaces,” Soft Matter, Vol. 4, No. 10, 2008, pp. 1943-1963. doi:10.1039/b804854a
[7] M. Nosonovsky and B. Bhushan, “Superhydrophobic Surfaces and Emerging Applications: Non-Adhesion, Energy, Green Engineering,” Current Opinion in Colloid & Interface Science, Vol. 14, No. 4, 2009, pp. 270-280. doi:10.1016/j.cocis.2009.05.004
[8] P. A. Levkin, F. Svec and J. J. M. Frechet, “Porous Polymer Coatings: A Versatile Approach to Superhydrophobic Surfaces,” Advanced Functional Materials, Vol. 19, No. 12, 2009, pp. 1993-1998. doi:10.1002/adfm.200801916
[9] B. Bhushan, Y. C. Jung and K. Koch, “Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces,” Lang-muir, Vol. 25, No. 5, 2009, pp. 3240-3248. doi:10.1021/la803860d
[10] X. Zhang, F. Shi, J. Niu, Y. G. Jiang and Z. Q. Wang, “Superhydrophobic Surfaces: From Structural Control to Functional Application,” Journal of Materials Chemistry, Vol. 18, No. 6, 2008, pp. 621-633. doi:10.1039/b711226b
[11] J. R. Dorvee, A. M. Derfus, S. N. Bhatia and M. J. Sailor, “Manipulation of Liquid Droplets Using Amphiphilic, Magnetic One-Dimensional Photonic Crystal Chaperones,” Nature Materials, Vol. 3, No. 12, 2004, pp. 896-899. doi:10.1038/nmat1253
[12] K. Y. Suh, M. C. Park and P. Kim, “Capillary Force Lithography: A Versatile Tool for Structured Biomaterials Interface towards Cell and Tissue Engineering,” Advanced Functional Materials, Vol. 19, No. 17, 2009, pp. 2699- 2712. doi:10.1002/adfm.200900771
[13] J. T. Han, X. R. Xu and K. W. Cho, “Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers,” Langmuir, Vol. 21, No. 15, 2005, pp. 6662- 6665. doi:10.1021/la051042+
[14] N. J. Shirtcliffe, G. McHale, M. I. Newton, G. Chabrol and C. C. Perry, “Dual-Scale Roughness Produces Un- usually Water-Repellent Surfaces,” Advanced Materials, Vol. 16, No. 21, 2004, pp. 1929-1932. doi:10.1002/adma.200400315
[15] H. S. Hwang, S. B. Lee and I. Park, “Fabrication of Rasp- berry-Like Superhydrophobic Hollow Silica Particles,” Materials Letters, Vol. 64, No. 20, 2010, pp. 2159-2162. doi:10.1016/j.matlet.2010.07.031
[16] Y. H. Huang, J. T. Wu and S. Y. Yang, “Direct Fabricating Patterns Using Stamping Transfer Process with PDMS Mold of Hydrophobic Nanostructures on Surface of Micro-Cavity,” Microelectronic Engineering, Vol. 88, No. 6, 2011, pp. 849-854. doi:10.1016/j.mee.2010.08.006
[17] T. Yang, H. Tian and Y. Chen, “Preparation of Superhy-drophobic Silica Films with Honeycomb-Like Structure by Emulsion Method,” Journal of Sol-Gel Science and Technology, Vol. 49, No. 2, 2009, pp. 243-246. doi:10.1007/s10971-008-1855-4
[18] H. Kinoshita, A. Ogasahara, Y. Fukuda and N. Ohmae, “Superhydrophobic/Superhydrophilic Micropatterning on a Carbon Nanotube Film Using a Laser Plasma-Type Hyperthermal Atom Beam Facility,” Carbon, Vol. 48, No. 15, 2010, pp. 4403-4408. doi:10.1016/j.carbon.2010.07.056
[19] Z. G. Guo, J. Fang, J. C. Hao, Y. M. Liang and W. M. Liu, “A Novel Approach to Stable Superhydrophobic Surfaces,” ChemPhysChem, Vol. 7, No. 8, 2006, pp. 1674- 1677. doi:10.1002/cphc.200600217
[20] K. K. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratung, W. I. Milne, G. H. McKinley and K. K. Gleason, “Superhydrophobic Carbon Nanotube Forests,” Nano Letters, Vol. 3, No. 12, 2003, pp. 1701-1705. doi:10.1021/nl034704t
[21] F. Mumm, A. T. J. van Helvoort and P. Sikoski, “An Easy Route to Superhydrophobic Copper Based Droplet Microfluidic Systems,” ACS Nano, Vol. 3, No. 9, 2009, pp. 2647-2652. doi:10.1021/nn900607p
[22] S. S. Latthe, H. Imai, V. Ganesan and A. V. Rao, “Super- hydrophobic Silica Films by Sol-Gel Co-Precursor Method,” Applied Surface Science, Vol. 256, No. 1, 2009, pp. 217-222. doi:10.1016/j.apsusc.2009.07.113
[23] V. V. Ganbavle, U. K. H. Bangi, S. S. Latthe, S. A. Mahadik and A. V. Rao, “Self-Cleaning Silica Coatings on Glass by Single Step Sol-Gel Route,” Surface and Coat- ings Technology, Vol. 205, No. 23-24, 2011, pp. 5338- 5344. doi:10.1016/j.surfcoat.2011.05.055
[24] S. S. Latthe, H. Hirashima and A. V. Rao, “TEOS Based Water Repellent Silica Films Obtained by a Co-Precursor Sol-Gel Method,” Smart Materials & Structures, Vol. 18, No. 9, 2009, p. 095017. doi:10.1088/0964-1726/18/9/095017
[25] A. V. Rao, S. S. Latthe, C. Kappenstein, V. Ganesan, M. C. Rath and S. N. Sawant, “Wetting Behavior of High Energy Electron Irradiated Porous Superhydrophobic Silica Films,” Applied Surface Science, Vol. 257, No. 7, 2011, pp. 3027-3032. doi:10.1016/j.apsusc.2010.10.111
[26] R. Furstner, W. Barthlott, C. Neinhuis and P. Walzel, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir, Vol. 21, No. 3, 2005, pp. 956-961.
[27] M. Ma, Y. Mao, M. Gupta, K. K. Gleason and G. C. Rutledge, “Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition,” Macro-molecules, Vol. 38, No. 23, 2005, pp. 9742-9748. doi:10.1021/ma0511189
[28] X. Zhang, Y. Guo, P. Zhang, Z. Wu and Z. Zhang, “Superhydrophobic CuO@Cu2S Nanoplate Vertical Arrays on Copper Surfaces,” Materials Letters, Vol. 64, No. 10, 2010, pp. 1200-1203. doi:10.1016/j.matlet.2010.02.050
[29] H. Liu, L. Feng, J. Zhai, L. Jiang and D. B. Zhu, “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity,” Langmuir, Vol. 20, No. 14, 2004, pp. 5659-5661. doi:10.1021/la036280o
[30] L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu and S. Prawer, “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film,” The Journal of Physical Chemistry B, Vol. 109, No. 16, 2005, pp. 7746-7748. doi:10.1021/jp046549s
[31] L. B. Zhu, Y. H. Xiu, J. W. Xu, P. A. Tamirisa, D. W. Hess and C. P. Wong, “Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon,” Langmuir, Vol. 21, No. 24, 2005, pp. 11208- 11212. doi:10.1021/la051410+
[32] M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li and L. Jiang, “Super-Hydrophobic Aligned Polystyrene Nanotubes Film with High Adhesive Force,” Advanced Materials, Vol. 17, No. 16, 2005, pp. 1977-1981. doi:10.1002/adma.200401726
[33] Y. T. Cheng, D. E. Rodak, A. Angelopoulos and T. Gacek, “Microscopic Observations of Condensation of Water on Lotus Leaves,” Applied Physics Letters, Vol. 87, No. 19, 2005, p. 194112. doi:10.1063/1.2130392
[34] N. J. Shirtcliffe, G. McHale, N. I. Newton, C. C. Perry and F. B. Pyatt, “Plastron Properties of a Super-Hydrophobic Surface,” Applied Physics Letters, Vol. 89, No. 10, 2006, p. 104106. doi:10.1063/1.2347266
[35] F. Shi, J. Niu, Z. Liu, Z. Q. Wang, M. Smet, W. Dehaen, Y. Qiu and X. Zhang, “To Adjust Wetting Properties of Organic Surface by in Situ Photoreaction of Aromatic Azide,” Langmuir, Vol. 23, No. 3, 2007, pp. 1253-1257. doi:10.1021/la062391m
[36] J. Genzer and K. Efimenko, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review,” Biofouling, Vol. 22, No. 5, 2006, pp. 339-360. doi:10.1080/08927010600980223
[37] X. M. Li, D. Reinhoudt and M. C. Calama, “What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces,” Chemical Society Reviews, Vol. 36, No. 8, 2007, pp. 1350-1368. doi:10.1039/b602486f
[38] P. Roach, N. J. Shirtcliffe and M. I. Newton, “Progress in Superhydrophobic Surface Development,” Soft Matter, Vol. 4, No. 2, 2008, pp. 224-240. doi:10.1039/b712575p
[39] L. Gao, T. J. McCarthy and X. Zhang, “Wetting and Superhydrophobicity,” Langmuir, Vol. 25, No. 24, 2009, pp. 14100-14104. doi:10.1021/la903043a
[40] K. Liu, X. Yao and L. Jiang, “Recent Developments in Bio-Inspired Special Wettability,” Chemical Society Reviews, Vol. 39, No. 8, 2010, pp. 3240-3255. doi:10.1039/b917112f
[41] Z. Guo, W. Liu and B. L. Su, “Superhydrophobic Surfaces: From Natural to Biomimetic to Functional,” Journal of Colloid and Interface Science, Vol. 353, No. 2, 2011, pp. 335-355. doi:10.1016/j.jcis.2010.08.047
[42] T. Young, “An Essay on the Cohesion of Fluids,” Philosophical Transactions of the Royal Society B, Vol. 95, 1805, pp. 65-87. doi:10.1098/rstl.1805.0005
[43] R. N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” Industrial & Engineering Chemistry, Vol. 28, No. 8, 1936, pp. 988-994. doi:10.1021/ie50320a024
[44] A. B. D. Cassie and S. Baxter, “Wettability of Porous Surfaces,” Transactions of the Faraday Society, Vol. 40, 1944, pp. 546-551. doi:10.1039/tf9444000546
[45] L. Barbieri, E. Wagner and P. Hoffmann, “Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles,” Langmuir, Vol. 23, No. 4, 2007, pp. 1723-1734. doi:10.1021/la0617964
[46] A. Lafuma and D. Quere, “Superhydrophobic States,” Nature Materials, Vol. 2, No. 7, 2003, pp. 457-460. doi:10.1038/nmat924
[47] Y. C. Jung and B. Bhushan, “Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces,” Langmuir, Vol. 25, No. 16, 2009, pp. 9208- 9218. doi:10.1021/la900761u
[48] T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki and X. C. Zeng, “Coexistence and Transition between Cassie and Wenzel State on Pillared Hydrophobic Surface,” Pro- ceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 21, 2009, pp. 8435-8440.
[49] S. He, M. Zheng, L. Yao, X. Yuan, M. Li, L. Ma and W. Shen, “Preparation and Properties of ZnO Nanostructures by Electrochemical Anodization Method,” Applied Surface Science, Vol. 256, No. 8, 2010, pp. 2557-2562. doi:10.1016/j.apsusc.2009.10.104
[50] Y. Huang, D. K. Sarkar and X. G. Chen, “A One-Step Process to Engineer Superhydrophobic Copper Surfaces,” Materials Letters, Vol. 64, No. 24, 2010, pp. 2722-2724. doi:10.1016/j.matlet.2010.09.010
[51] H. Meng, S. Wang, J. Xi, Z. Tang and L. Jiang, “Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals,” The Journal of Physical Chemistry C, Vol. 112, No. 30, 2008, pp. 11454-11458. doi:10.1021/jp803027w
[52] L. Wang, S. Guo and S. Dong, “Facile Electrochemical Route to Directly Fabricate Hierarchical Spherical Cupreous Microstructures: Toward Superhydrophobic Surface,” Electrochemistry Communications, Vol. 10, No. 4, 2008, pp. 655-658. doi:10.1016/j.elecom.2008.01.034
[53] Y. Li, W. Z. Jia, Y. Y. Song and X. H. Xia, “Superhy-drophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic Template,” Chemistry of Materials, Vol. 19, No. 23, 2007, pp. 5758-5764. doi:10.1021/cm071738j
[54] M. S. Islam, N. Akter and M. R. Karim, “Preparation of Superhydrophobic Membranes by Electrospinning of Fluorinated Silane Functionalized Pullulan,” Colloids and Sur- faces A: Physicochemical and Engineering Aspects, Vol. 362, No. 1-3, 2010, pp. 117-120. doi:10.1016/j.colsurfa.2010.04.004
[55] M. Kang, R. Jung, H. S. Kim and H. J. Jin, “Preparation of Superhydrophobic Polystyrene Membranes by Electrospinning,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 313-314, 2008, pp. 411- 414. doi:10.1016/j.colsurfa.2007.04.122
[56] S. H. Park, S. M. Lee, H. S. Lim, J. T. Han, D. R. Lee, H. S. Shin, Y. Jeong, J. Kim and J. H. Cho, “Robust Super- hydrophobic Mats Based on Electrospun Crystalline Nan-ofibers Combined with a Silane Precursor,” Applied Materials and Interfaces, Vol. 2, No. 3, 2010, pp. 658-662. doi:10.1021/am100005x
[57] N. Zhan, Y. Li, C. Zhang, Y. Song, H. Wang, L. Sun, Q. Yang and X. Hong, “A Novel Multinozzle Electrospinning Process for Preparing Superhydrophobic PS Films with Controllable Bead-on-String/Microfiber Morphology,” Journal of Colloid and Interface Science, Vol. 345, No. 2, 2010, pp. 491-495. doi:10.1016/j.jcis.2010.01.051
[58] D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang and L. Chi, “Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces,” Langmuir, Vol. 25, No. 14, 2009, pp. 7769-7772. doi:10.1021/la9013009
[59] M. Li, J. H. Xu and Q. H. Lu, “Creating Superhydropho-bic Surfaces with Flowery Structures on Nickel Sub-strates through a Wet-Chemical-Process,” Journal of Materials Chemistry, Vol. 17, No. 45, 2007, pp. 4772-4776. doi:10.1039/b709665h
[60] L. Pan, H. Dong and P. Bi, “Facile Preparation of Super- hydrophobic Copper Surface by HNO3 Etching Technique with the Assistance of CTAB and Ultrasonication,” Applied Surface Science, Vol. 257, No. 5, 2010, pp. 1707- 1711. doi:10.1016/j.apsusc.2010.09.001
[61] F. Wang, K. Zhao, J. Cheng and J. Zhang, “Conciliating Surface Superhydrophobicities and Mechanical Strength of Porous Silicon Films,” Applied Surface Science, Vol. 257, No. 7, 2011, pp. 2752-2755. doi:10.1016/j.apsusc.2010.10.056
[62] Y. Wang, W. Wang, L. Zhong, J. Wang, Q. Jiang and X. Guo, “Super-Hydrophobic Surface on Pure Magnesium Substrate by Wet Chemical Method,” Applied Surface Science, Vol. 256, No. 12, 2010, pp. 3837-3840. doi:10.1016/j.apsusc.2010.01.037
[63] C. Gu, J. Zhang and J. Tu, “A Strategy of Fast Reversible Wettability Changes of WO3 Surfaces between Superhy-drophilicity and Superhydrophobicity,” Journal of Colloid and Interface Science, Vol. 352, No. 2, 2010, pp. 573-579. doi:10.1016/j.jcis.2010.08.064
[64] B. Xu and Z. S. Cai, “Fabrication of a Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via a Wet Chemical Route and Hydrophobic Modification,” Applied Surface Science, Vol. 254, No. 18, 2008, pp. 5899-5904. doi:10.1016/j.apsusc.2008.03.160
[65] J. Wu, J. Xia, W. Lei and B. P. Wang, “Fabrication of Superhydrophobic Surfaces with Double-Scale Roughness,” Materials Letters, Vol. 64, No. 11, 2010, pp. 1251- 1253. doi:10.1016/j.matlet.2010.02.060
[66] H. J. Song, X. Q. Shen, H. Y. Ji and X. J. Jing, “Superhy-drophobic Iron Material Surface with Flower-Like Structures Obtained by a Facile Self-Assembled Monolayer,” Applied Physics A, Vol. 99, No. 3, 2010, pp. 685-689. doi:10.1007/s00339-010-5593-4
[67] H. S. Khoo and F. G. Tseng, “Engineering the 3D Architecture and Hydrophobicity of Methyltrichlorosilane Nano- structures,” Nanotechnology, Vol. 19, No. 34, 2008, p. 345603. doi:10.1088/0957-4484/19/34/345603
[68] W. Song, V. S. Gaware, O. V. Runarsson, M. Masson and J. F. Mano, “Functionalized Superhydrophobic Biomimetic Chitosan-Based Films,” Carbohydrate Polymers, Vol. 81, No. 1, 2010, pp. 140-144. doi:10.1016/j.carbpol.2010.01.041
[69] Q. Wang, W. Hou and Y. Zhang, “Superhydrophobic and luminescent Methylsilicone Resin Film,” Applied Surface Science, Vol. 256, No. 3, 2009, pp. 664-667. doi:10.1016/j.apsusc.2009.08.038
[70] Z. J. Wei, W. L. Liu, D. Tian, C. L. Xiao and X. Q. Wang, “Preparation of Lotus-Like Superhydrophobic Fluoropo- lymer Films,” Applied Surface Science, Vol. 256, No. 12, 2010, pp. 3972-3976. doi:10.1016/j.apsusc.2010.01.059
[71] Q. F. Xu and J. N. Wang, “Superhydrophobic and Transparent Coatings Prepared by Selfassembly of Dual-Sized Silica Particles,” Frontiers of Materials Science in China, Vol. 4, No. 2, 2010, pp. 180-188. doi:10.1007/s11706-010-0020-5
[72] Y. Song, R. P. Nair, M. Zou and Y. Wang, “Superhydrophobic Surfaces Produced by Applying a Self-Assembled Monolayer to Silicon Micro/Nano-Textured Surfaces,” Nano Research, Vol. 2, No. 2, 2009, pp. 143-150. doi:10.1007/s12274-009-9012-0
[73] J. Yang, P. Pi, X. Wen, D. Zheng, M. Xu, J. Cheng and Z. Yang, “A Novel Method to Fabricate Superhydrophobic Surfaces Based on Well-Defined Mulberry-Like Particles and Self-Assembly of Polydimethylsiloxane,” Applied Surface Science, Vol. 255, No. 6, 2009, pp. 3507-3512. doi:10.1016/j.apsusc.2008.09.092
[74] Y. Zhao, Y. Tang, X. Wang and T. Lin, “Superhydrophobic Cotton Fabric Fabricated by Electrostatic Assembly of Silica Nanoparticles and Its Remarkable Buoyancy,” Ap- plied Surface Science, Vol. 256, No. 22, 2010, pp. 6736- 6742. doi:10.1016/j.apsusc.2010.04.082
[75] S. Jindasuwan, O. Nimittrakoolchai, P. Sujaridworakun, S. Jinawath and S. Supothina, “Surface Characteristics of Water-Repellent Polyelectrolyte Multilayer Films Con- taining Various Silica Contents,” Thin Solid Films, Vol. 517, No. 17, 2009, pp. 5001-5005. doi:10.1016/j.tsf.2009.03.116
[76] S. Amigoni, E. T. de Givenchy, M. Dufay and F. Guittard, “Covalent Layer-by-Layer Assembled Superhydrophobic Organic-Inorganic Hybrid Films,” Langmuir, Vol. 25, No. 18, 2009, pp. 11073-11077. doi:10.1021/la901369f
[77] Y. Y. Ji, S. S. Kim, O. P. Kwon and S. H. Lee, “Easy Fabrication of Large-Size Superhydrophobic Surfaces by Atmospheric Pressure Plasma Polymerization with Non- Polar Aromatic Hydrocarbon in an In-Line Process,” Applied Surface Science, Vol. 255, No. 8, 2009, pp. 4575- 4578. doi:10.1016/j.apsusc.2008.12.002
[78] S. H. Yang, C. H. Liu, W. T. Hsu and H. Chen, “Preparation of Super-Hydrophobic Films Using Pulsed Hexa-fluorobenzene Plasma,” Surface and Coatings Technology, Vol. 203, No. 10-11, 2009, pp. 1379-1383. doi:10.1016/j.surfcoat.2008.11.007
[79] D. Banerjee, S. Mukherjee and K. K. Chattopadhyay, “Controlling the Surface Topology and Hence the Hydro-phobicity of Amorphous Carbon Thin Films,” Carbon, Vol. 48, No. 4, 2010, pp. 1025-1031. doi:10.1016/j.carbon.2009.11.021
[80] R. D. Mundo, V. D. Benedictis, F. Palumbo and R. d’Agostino, “Fluorocarbon Plasmas for Nanotexturing of Polymers: A Route to Water-Repellent Anti-Reflective Surfaces,” Applied Surface Science, Vol. 255, No. 10, 2009, pp. 5461-5465. doi:10.1016/j.apsusc.2008.09.020
[81] L. Kong, X. Chen, G. Yang, L. Yu and P. Zhang, “Preparation and Characterization of Slice-Like Cu2(OH)3NO3 Superhydrophobic Structure on Copper Foil,” Applied Surface Science, Vol. 254, No. 22, 2008, pp. 7255-7258. doi:10.1016/j.apsusc.2008.05.317
[82] J. Liu, X. Huang, Y. Li, Z. Li, Q. Chi and G. Li, “Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process,” Solid State Sciences, Vol. 10, No. 11, 2008, pp. 1568-1576. doi:10.1016/j.solidstatesciences.2008.02.005
[83] H. Liu, S. Szunerits, W. Xu and R. Boukherroub, “Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers,” Applied Materials and Interfaces, Vol. 1, No. 6, 2009, pp. 1150-1153. doi:10.1021/am900100q
[84] S. Li, S. Zhang and X. Wang, “Fabrication of Superhy-drophobic Cellulose-Based Materials through a Solution- Immersion Process,” Langmuir, Vol. 24, No. 10, 2008, pp. 5585-5590. doi:10.1021/la800157t
[85] A. Hozumi, D. F. Cheng and M. Yagihashi, “Hydropho- bic/Superhydrophobic Oxidized Metal Surfaces Showing Negligible Contact Angle Hysteresis,” Journal of Colloid and Interface Science, Vol. 353, No. 2, 2011, pp. 582-587. doi:10.1016/j.jcis.2010.09.075
[86] C. T. Hsieh, W. Y. Chen and F. L. Wu, “Fabrication and Superhydrophobicity of Fluorinated Carbon Fabrics with Micro/Nanoscaled Two-Tier Roughness,” Carbon, Vol. 46, No. 9, 2008, pp. 1218-1224. doi:10.1016/j.carbon.2008.04.026
[87] J. Zimmermann, F. A. Reifler, G. Fortunato, L. C. Ger- hardt and S. Seeger, “A Simple, One Step Approach to Durable and Robust Superhydrophobic Textiles,” Ad- vanced Functional Materials, Vol. 18, No. 22, 2008, pp. 3662-3669. doi:10.1002/adfm.200800755
[88] C. H. Lee, N. Johnson, J. Drelich and Y. K. Yap, “The Performance of Superhydrophobic and Superoleophilic Carbon Nanotube Meshes in Water-Oil Filtration,” Carbon, Vol. 49, No. 2, 2011, pp. 669-676. doi:10.1016/j.carbon.2010.10.016
[89] L. Yao, M. Zheng, S. He, L. Ma, M. Li and W. Shen, “Preparation and Properties of ZnS Superhydrophobic Surface with Hierarchical Structure,” Applied Surface Science, Vol. 257, No. 7, 2011, pp. 2955-2959. doi:10.1016/j.apsusc.2010.10.098
[90] S. S. Latthe, H. Imai, V. Ganesan and A. V. Rao, “Ultra- hydrophobic Silica Films by Sol-Gel Process,” Journal of Porous Materials, Vol. 17, No. 5, 2010, pp. 565-571. doi:10.1007/s10934-009-9325-0
[91] S. L. Dhere, S. S. Latthe, C. Kappenstein, G. M. Pajonk, H. Imai, V. Ganesan, S. C. Gupta, P. B. Wagh and A. V. Rao, “Transparent Water Repellent Silica Films by Sol- Gel Process,” Applied Surface Science, Vol. 256, No. 11, 2010, pp. 3624-3629. doi:10.1016/j.apsusc.2009.12.166
[92] S. S. Latthe, H. Imai, V. Ganesan and A. V. Rao, “Porous Superhydrophobic Silica Films by Sol-Gel Process,” Microporous and Mesoporous Materials, Vol. 130, No. 1-3, 2010, pp. 115-121. doi:10.1016/j.micromeso.2009.10.020
[93] A. V. Rao, S. S. Latthe, D. Y. Nadargi, H. Hirashima and V. Ganesan, “Preparation of MTMS Based Transparent Superhydrophobic Silica Films by Sol-Gel Method,” Journal of Colloid and Interface Science, Vol. 332, No. 2, 2009, pp. 484-490. doi:10.1016/j.jcis.2009.01.012
[94] A. V. Rao, S. S. Latthe, S. L. Dhere, S. S. Pawar, H. Imai, V. Ganesan, S. C. Gupta and P. B. Wagh, “Control on Wetting Properties of Spin-Deposited Silica Films by Surface Silylation Method,” Applied Surface Science, Vol. 256, No. 7, 2010, pp. 2115-2121. doi:10.1016/j.apsusc.2009.09.057
[95] S. S. Latthe, S. L. Dhere, C. Kappenstein, H. Imai, V. Ganesan, S. C. Gupta, P. B. Wagh and A. V. Rao, “Sliding Behavior of Water Drops on Sol-Gel Derived Hydro- phobic Silica Films,” Applied Surface Science, Vol. 256, No. 10, 2010, pp. 3259-3264. doi:10.1016/j.apsusc.2009.12.016
[96] A. B. Gurav, S. S. Latthe, C. Kappenstein, S. K. Mukhar- jee, A. V. Rao and R. S. Vhatkar, “Porous Water Repellent Silica Coatings on Glass by Sol-Gel Method,” Journal of Porous Materials, Vol. 18, No. 3, 2011, pp. 361- 367. doi:10.1007/s10934-010-9386-0
[97] A. V. Rao, A. B. Gurav, S. S. Latthe, R. S. Vhatkar, C. Kappenstein, P. B. Wagh and S. C. Gupta, “Water Repel- lent Porous Silica Films by Sol-Gel Dip-Coating Method,” Journal of Colloid and Interface Science, Vol. 352, No. 1, 2010, pp. 30-35. doi:10.1016/j.jcis.2010.08.003
[98] S. S. Latthe, H. Imai, V. Ganesan, C. Kappenstein and A. V. Rao, “Optically Transparent Superhydrophobic TEOS- Derived Silica Films by Surface Silylation Method,” Journal of Sol-Gel Science and Technology, Vol. 53, No. 2, 2010, pp. 208-215. doi:10.1007/s10971-009-2079-y
[99] A. V. Rao, S. S. Latthe, S. A. Mahadik and C. Kappen- stein, “Mechanically Stable and Corrosion Resistant Superhydrophobic Sol-Gel Coatings on Copper Substrate,” Applied Surface Science, Vol. 257, No. 13, 2011, pp. 5772-5776. doi:10.1016/j.apsusc.2011.01.099
[100] S. S. Latthe, D. Y. Nadargi and A. V. Rao, “TMOS Based Water Repellent Silica Thin Films by Co-Precursor Method Using TMES as a Hydrophobic Agent,” Applied Surface Science, Vol. 255, No. 6, 2009, pp. 3600-3604. doi:10.1016/j.apsusc.2008.10.005
[101] B. J. Basu, V. Hariprakash, S. T. Aruna, R. V. Lakshmi, J. Manasa and B. S. Shruthi, “Effect of Microstructure and Surface Roughness on the Wettability of Superhydrophobic Sol-Gel Nanocomposite Coatings,” Journal of Sol-Gel Science and Technology, Vol. 56, No. 3, 2010, pp. 278- 286. doi:10.1007/s10971-010-2304-8
[102] Y. H. Xiu, D. W. Hess and C. R. Wong, “UV and Thermally Stable Superhydrophobic Coatings from Sol-Gel Processing,” Journal of Colloid and Interface Science, Vol. 326, No. 2, 2008, pp. 465-470. doi:10.1016/j.jcis.2008.06.042
[103] Q. W. Gan, Q. Zhu, Y. L. Guo and C. Q. Yang, “Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Non- fluorinated Alkylsilane,” Industrial & Engineering Chemistry Research, Vol. 48, No. 22, 2009, pp. 9797-9803.
[104] S. M. Shang, Z. Li, Y. Xing, J. H. Xin and X. M. Tao, “Preparation of Durable Hydrophobic Cellulose Fabric from Water Glass and Mixed Organosilanes,” Applied Surface Science, Vol. 257, No. 5, 2010, pp. 1495-1499. doi:10.1016/j.apsusc.2010.08.081
[105] Z. X. Li, Y. J. Xing and J. J. Dai, “Superhydrophobic Surfaces Prepared from Water Glass and Non-Fluorinated Alkylsilane on Cotton Substrates,” Applied Surface Science, Vol. 254, No. 7, 2008, pp. 2131-2135. doi:10.1016/j.apsusc.2007.08.083
[106] R.V. Lakshmi and B. J. Basu, “Fabrication of Superhy- drophobic Sol-Gel Composite Films Using Hydrophobi- cally Modified Colloidal Zinc Hydroxide,” Journal of Colloid and Interface Science, Vol. 339, No. 2, 2009, pp. 454-460. doi:10.1016/j.jcis.2009.07.064
[107] Q. F. Xu, J. N. Wang, and K. D. Sanderson, “Organic-Inorganic Composite Nanocoatings with Superhydropho- bicity, Good Transparency, and Thermal Stability,” ACS Nano, Vol. 4, No. 4, 2010, pp. 2201-2209. doi:10.1021/nn901581j
[108] H. X. Wang, J. Fang, T. Cheng, J. Ding, L. T. Qu, L. M. Dai, X. G. Wang and T. Lin, “One-Step Coating of Fluoro- Containing Silica Nanoparticles for Universal Generation of Surface Superhydrophobicity,” Chemical Commu-nica- tions, No. 7, 2008, pp. 877-879. doi:10.1039/b714352d
[109] R. Taurino, E. Fabbri, M. Messori, F. Pilati, D. Pospiech and A. Synytska, “Facile Preparation of Superhydropho- bic Coatings by Sol-Gel Processes,” Journal of Colloid and Interface Science, Vol. 325, No. 1, 2008, pp. 149-156. doi:10.1016/j.jcis.2008.05.007
[110] Y. Xiu, F. Xiao, D. W. Hess and C. P. Wong, “Superhy- drophobic Optically Transparent Silica Films Formed with a Eutectic Liquid,” Thin Solid Films, Vol. 517, No. 5, 2009, pp. 1610-1615. doi:10.1016/j.tsf.2008.09.081
[111] W. Hou, B. Mu and Q. Wang, “Studies on Wettability of Polypropylene/Methyl-Silicone Composite Film and Polypropylene Monolithic Material,” Journal of Colloid and Interface Science, Vol. 327, No. 1, 2008, pp. 120-124. doi:10.1016/j.jcis.2008.07.056
[112] A. Steele, I. Bayer, S. Moran, A. Cannon, W. P. King and E. Loth, “Conformal ZnO Nanocomposite Coatings on Micro-Patterned Surfaces for Superhydrophobicity,” Thin Solid Films, Vol. 518, No. 19, 2010, pp. 5426-5431. doi:10.1016/j.tsf.2010.03.084
[113] Y. Guo, Q. Wang and T. Wang, “A Facile Process for Preparing Superhydrophobic Films with Surface-Modified SiO2/Nylon 6,6 Nanocomposite,” Journal of Materials Science, Vol. 46, No. 11, 2011, pp. 4079-4084. doi:10.1007/s10853-011-5337-7
[114] J. Yang, Z. Zhang, X. Mena and X. Xu, “Fabrication of Stable, Transparent and Superhydrophobic Nanocomposite Films with Polystyrene Functionalized Carbon Nano- tubes,” Applied Surface Science, Vol. 255, No. 22, 2009, pp. 9244-9247. doi:10.1016/j.apsusc.2009.07.010

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.