Influence of Carbon Content of WC-Co Electrode Materials on the Wear Resistance of Electrospark Coatings

Abstract

In the electrospark deposition (ESD) of WC-Co materials on low carbon steel, tungsten carbide (WC) decarburization is observed. The use of an inert atmosphere (argon) does not eliminate the problem of tungsten carbide decarburization during electrospark processing. The effect of the carbon concentration of electrode materials on the phase composition and mechanical properties of WC (10 wt% of Co) ESD coatings has been investigated in this work. The introduction of additional carbon (graphite) in the electrode material on the basis of the WC-10%Co leads to an increased amount of WC in the obtained coatings and thus improves their wear resistance.

Share and Cite:

A. A. Burkov, S. A. Pyachin and A. V. Zaytsev, "Influence of Carbon Content of WC-Co Electrode Materials on the Wear Resistance of Electrospark Coatings," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 2, 2012, pp. 65-70. doi: 10.4236/jsemat.2012.22012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A.V. Ribalko and O. Sahin, “A Modern Representation of the Behaviour of Electrospark Alloying of Steel by Hard Alloy,” Surface and Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 1724-1730. doi:10.1016/j.surfcoat.2006.02.044
[2] J.-S. Wang, H.-M. Meng, H.-Y. Yu, Z.-S. Fan and D.-B. Sun, “Characterization and Wear Behavior of WC-0.8Co Coating on Cast Steel Rolls by Electro-Spark Deposition,” International Journal of Minerals, Metallurgy and Materials, Vol. 16, No. 6, 2009, pp. 707-713.
[3] E. A. Levashov, E. I. Zamulaeva, A. E. Ku-dryashov, P. V. Vakaev, M. I. Petrzhik and A. Sanz, “Materials Science and Technological Aspects of Electrospark Deposition of Nanostructured WC-Co Coatings onto Titanium Substrates,” Plasma Processes and Polymers, Vol. 4, No. 3, 2007, pp. 293-300. doi:10.1002/ppap.200600148
[4] N. Radek and K. Bartkowiak, “Performance Properties of Electro-Spark Depo-sited Carbide-Ceramic Coatings Modified by Laser Beam,” Physics Procedia, Vol. 5, 2010, pp. 417-423.
[5] E. I. Za-mulaeva, E. A. Levashov, A. E. Kudryashov, P. V. Vakaev and M. I. Petrzhik, “Electrospark Coatings Deposited onto an Armco Iron Substrate with Nano- and Microstructured WC-Co Electrodes: Deposition Process, Structure, and Properties,” Surface and Coatings Technology, Vol. 202, No. 15, 2008, pp. 3715-3722. doi:10.1016/j.surfcoat.2008.01.008
[6] R. J. Wang, Y. Y. Qian and J. Liu, “Interface Behavior Study of WC92-Co8 Coating Produced by Electrospark Deposition,” Applied Surface Science, Vol. 240, No. 1-4, 2005, pp. 42-47. doi:10.1016/j.apsusc.2004.05.299
[7] P. Bague, J. P. Morizot and G. Desgardin, “Evidence for the Phenomenon of Carburi-zation-Decarburization of Tungsten Carbide,” Journal of Physics D: Applied Physics, Vol. 27, No. 2, 1994, pp. 402-406. doi:10.1088/0022-3727/27/2/034
[8] S. V. Nikolenko, S. A. Pyachin and A. A. Burkov, “Formation of electrospark coatings of the VK8 hard alloy with the Al2O3 additive,” Russian Journal of Non-Ferrous Metals, Vol. 52, No. 1, 2011, pp. 56-61.
[9] V. S. Panov, “Technology and Properties of Sin-tered Hard Alloys,” MISA, Moscow, 2001.
[10] V. I. Tretya-kov, “Fundamentals of Physical Metal-Lurgy and Production of Sintered Hard Alloys,” Metallurgy, Moscow, 1976.
[11] Y. Kusano, K. V. Acker and I. M. Hutchings, “Methods of Data Analysis for the Micro-Scale Abrasion Test on Coated Substrates,” Surface and Coatings Technology, Vol. 183, No. 2-3, 2004, pp. 312-327. doi:10.1016/j.surfcoat.2003.10.010
[12] L. Slatineanu, M. Coteata, A. Goncalves-Coelho, V. Braha, R. Purcariu and A. Radeanu, “Metallurgical Phenomena at the Surface Alloying and Deposition by Electrical Discharges,” Metalurgia International, Vol. 14, 2009, pp. 229-234.
[13] J. M. Guilemany, S. Dosta and J. R. Miguel, “The Enhancement of the Properties of WC-Co HVOF Coatings through the Use of Nanostructured and Microstructured Feedstock Powders,” Surface and Coatings Technology, Vol. 201, No. 3-4, 2006, pp. 1180-1190. doi:10.1016/j.surfcoat.2006.01.041
[14] S. Y. Park, M. C. Kim and C. G. Park, “Mechanical Properties and Microstructure Evolution of the Nano WC-Co Coatings Fabricated by Detona-tion Gun Spraying with Post Heat Treatment,” Materials Science and Engineering: A, Vol. 449-451, 2007, pp. 894-897. doi:10.1016/j.msea.2006.02.444
[15] M. Magnani, P. H. Su-egama, N. Espallargas, S. Dosta, C. S. Fugivara, J. M. Guile-many and A. V. Benedetti, “Influence of HVOF Parameters on the Corrosion and Wear Resistance of WC-Co Coatings Sprayed on AA7050 T7,” Surface and Coatings Technology, Vol. 202, No. 19, 2008, pp. 4746-4757. doi:10.1016/j.surfcoat.2008.04.055
[16] K. R. C. Soma Raju, N. H. Faisala, D. Srinivasa Raoa, S. V. Joshia and G. Sundararajan, “Electro-Spark Coatings for Enhanced Performance of Twist Drills,” Surface and Coatings Technology, Vol. 202, No. 9, 2008, pp. 1636- 1644. doi:10.1016/j.surfcoat.2007.07.084
[17] J. Wang, H. Meng, H. Yu, Z. Fan and D. Sun, “Wear Characteristics of Spheroidal Graphite Roll WC-8Co Coating Produced by Electro-Spark Deposition,” Rare Metals, Vol. 29, No. 2, 2010, pp. 174-179. doi:10.1007/s12598-010-0030-6
[18] P. K. Aw and B. H. Tan, “Study of Microstructure, Phase and Microhardness Distribution of HVOF Sprayed Multi-Modal Structured and Conventional WC-17Co Coatings,” Journal of Materials Processing Technology, Vol. 174, No. 1-3, 2006, pp. 305-311. doi:10.1016/j.jmatprotec.2006.02.006
[19] N. Radek, “Deter-mining the Operational Properties of Steel Beaters after Elec-trospark Deposition,” Eksploatacja i Niezawodnosc, No. 4, 2009, pp. 10-16.
[20] G. V. Samsonov, V. K. Vitryanyk and F. I. Chapligin, “Tungsten Carbides,” Naukova Dumka, Kiev, 1974.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.