A Comparative Testing of Cucumber mosaic virus (CMV)-Based Constructs to Generate Virus Resistant Plants

Abstract

Among the viruses Cucumber mosaic virus (CMV) has been rated worldwide as one of the five most important viruses infecting vegetable species. CMV is a tripartite virus with high sequence variability, classified into three subgroups with 80% to 97% identical nucleotides in their coat protein. Due to the absence of natural resistance CMV is the plant virus with longest history in genetic engineering using pathogen induced approaches. However, the transformation and regeneration for some very important crops like chili is difficult. Therefore it will be an advantage to screen in model plants for gene constructs which might be independent of the target of final transformation and other parameters having an influence on the efficiency of a biotechnological approach. In our study we compared the resistance for all combinations of five different antiviral constructs, two different transformation vectors and two model host plants. From these approaches we identified the most effective construct which might also be applicable to transform eventually chili plants.

Share and Cite:

X. Tan, D. Zhang, C. Wintgens, P. Willingmann, G. Adam and C. Heinze, "A Comparative Testing of Cucumber mosaic virus (CMV)-Based Constructs to Generate Virus Resistant Plants," American Journal of Plant Sciences, Vol. 3 No. 4, 2012, pp. 461-472. doi: 10.4236/ajps.2012.34055.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. F. Hadden and L. L. Black, “Anthracnose of Pepper Caused by Colletotrichum spp.,” International Symposium on Integrated Management Practices for Tomato and Pepper Production in the Tropics, Taiwan, 21-26 March 1988, Taiwan Asian Vegetable Research and Development Centre, pp. 189-199.
[2] B. Villalon, “Breeding Peppers to Resist Virus Diseases,” Plant Disease, Vol. 65, No.7, 1981, pp. 557-561. doi:10.1094/PD-65-557
[3] S. K. Green and J. S. Kim, “Characterization and Control of Pepper Viruses: A Literature Review,” AVRDC Technical Bulletin, Vol. 18, 1991, pp. 1-60.
[4] P. Palukaitis, and F. Garcia Arenal, “Cucumoviruses,” Advances in Virus Research, Vol. 62, 2003, pp. 241-323. doi:10.1016/S0065-3527(03)62005-1
[5] P. Palukaitis, M. J. Roossinck, R. G. Dietzgen and R. J. Francki, “Cucumber mosaic virus,” Advances in Virus Research, Vol. 41, 1992, pp. 281-348. doi:10.1016/S0065-3527(08)60039-1
[6] S. S. Lin, R. Henriques, H. W. Wu, Q. W. Niu, S. D. Yeh, N. H. Chua, P. Palukaitis and F. GarciaArenal, “Cucumoviruses,” Advances in Virus Research, Vol. 62, 2003, pp. 241-323. doi:10.1016/S0065-3527(03)62005-1
[7] M. J. Roossinck, L. Zhang and K. H. Hellwald, “Rearrangement in the 5′ Nontranslated Region and Phylogenetic Analyses of Cucumber mosaic virus RNA3 Indicate Radial Evolution of Three Subgroups,” Journal of Virology, Vol. 73, No. 9, 1999, pp. 6752-6758.
[8] D. Zhang, P. Willingmann, C. Heinze, G. Adam, M. Pfunder, B. Frey and J. E. Frey, “Differentiation of Cucumber mosaic virus Isolates by Hybridization to Oligonucleotides in a Microarray Format,” Journal of Virological Methods, Vol. 123, No. 1, 2005, pp. 101-108. doi:10.1016/j.jviromet.2004.09.021
[9] J. L. Troutman and R. W. Fulton, “Resistance in Tobacco to Cucumber mosaic virus,” Virology, Vol. 6, No. 2, 1958, pp. 303-316. doi:10.1016/0042-6822(58)90084-9
[10] C. Caranta, A. Palloix, V. Lefebvre and A. M. Daubèze, “QTLs for a Component of Partial Resistance to Cucumber mosaic virus in Pepper: Restriction of Virus Installation in Hostcells,” Theoretical and Applied Genetics, Vol. 94, No. 3-4, 1997, pp. 431-438. doi:10.1007/s001220050433
[11] C. Caranta, S. Pflieger, V. Lefebvre, A. M. Daubèze, A. Thabuis and A.Palloix, “QTLs Involved in Restriction of Cucumber mosaic virus (CMV) Longdistance Movement in Pepper,” Theoretical and Applied Genetics, Vol. 104, 2002, No. 2, pp. 586-591.
[12] R. C. Grube, E. R. Radwansky and M. Jahn, “Comparative Genetics of Disease Resistance within the Solanaceae,” Genetics, Vol.155, No. 2, 2000, pp. 873-887.
[13] K. Suzuki, T. Kuroda, Y. Miura and J. Muria, “Screening and Weld Traits of Virus Resistant Source in Capsicum spp,” Plant Disease, Vol. 87, No. 7, 2003, pp. 779-783. doi:10.1094/PDIS.2003.87.7.779
[14] W.H. Kang, N. H. Hoang, H. B. Yang, J. K. Kwon, S.H. Jo, J. K. Seo, K.H. Kim, D. Choi and B. C. Kang, “Molecular Mapping and Characterization of a Single Dominant Gene Controlling CMV Resistance in Peppers (Capsicum annuum L.),” Theoretical and Applied Genetics, Vol. 120, No. 8, 2009, pp. 1587-1596. doi:10.1007/s00122-010-1278-9
[15] M. Y. Lee, J. H. Lee, H. I. Ahn, M. J. Kim, N. H. Her, J. K. Choi, C. H. Harn and K. H. Ryu, “Identification and Sequence Analysis of RNA3 of a Resistance Breaking Isolate of Cucumber mosaic virus from Capsicum annuum,” Plant Pathology Journal, Vol. 22, No. 3, 2006, pp. 265-270. doi:10.5423/PPJ.2006.22.3.265
[16] D. Zhang, X. Tan, P. Willingmann, G. Adam, C. Heinze, “Problems Encountered with the Selection of Cucumber mosaic virus (CMV) Isolates for Resistance Breeding Programs,” Journal of Phytopathology, Vol. 159, No. 9, 2011, pp. 621-629. doi:10.1111/j.1439-0434.2011.01816.x
[17] M. Morroni, J. R. Thompson and M. Tepfer, “Twenty Years of Transgenic Plants Resistant to Cucumber mosaic virus,” Molecular Plant Microbe Interactions, Vol. 21, No. 6, 2008, pp. 675-684. doi:10.1094/MPMI-21-6-0675
[18] A.Srivastava and S. K. Raj, “Coat Protein-Mediated Resistance against an Indian Isolate of the Cucumber mosaic virus Subgroup IB in Nicotiana benthamiana,” Journal of Biosciences, Vol. 33, No. 3, 2008, pp. 249-257. doi:10.1007/s12038-008-0042-7
[19] W. M. Wintermantel and M. Zaitlin, “Transgene Translatability Increases Effectiveness of Replicase-Mediated Resistance to Cucumber mosaic virus,” Journal of General Virology, Vol. 81, No. 3, 2000, pp. 587-595.
[20] R. Shin, J. H. Han, G. J. Lee and K. H. Peak, “The Potential Use of a Viral Coat Protein Gene as a Transgene Screening Marker and Multiple Virus Resistance of Pepper Plants Coexpressing Coat Proteins of Cucumber mosaic virus and Tomato mosaic virus,” Transgenic Research, Vol. 11, No. 2, 2002, pp. 215-219. doi:10.1023/A:1015200622716
[21] W.Q. Cai, R.X. Fang, H. S. Shang, X. Wang, F. L. Zhang, Y. R. Li, J. C. Zhang, X. Y. Cheng, G. L. Wang and K. Q. Mang, “Development of CMV and TMV Resistant Chili Pepper: Field Performance and Biosafety Assessment,” Molecular Breeding, Vol. 11, No. 1, 2003, pp. 25-35. doi:10.1023/A:1022655204552
[22] Y. X. Zhu, W. J. OuYang, Y. F. Zhang and Z. L. Chen, “Transgenic Sweet Pepper Plants from Agrobacterium Mediated Transformation,” Plant Cell Reports, Vol. 16, No. 1-2, 1966, pp. 71-75. doi:10.1007/BF01275453
[23] Y. H. Lee, M. Jung, S. H. Shin, J. H. Lee, S. H. Choi, N. H. Her, J. H. Lee, K. H. Ryu, K. Y. Paek and C. H. Harn, “Transgenic Peppers That Are Highly Tolerant to a New CMV Pathotype,” Plant Cell Reports, Vol. 28, No. 2, 2009, pp. 223-232. doi:10.1007/BF01275453
[24] T. Christopher and M. V. Rajam, “Effect of Genotype, Explants and Medium on in Vitro Regeneration of Red Pepper,” Plant Cell and Tissue Organ Culture, Vol. 46, No. 3, 1996, pp. 245-250. doi:10.1007/BF02307101
[25] Y. H. Lee, H. S. Kim, J.Y. Kim, M. Jung, Y. S. Park, J. S. Lee, S. H. Choi, N. H. Her, J. H. Lee, N. L. Hyung, C. H. Lee, S. G. Yang and C. H. Harn, “A New Selection Method for Pepper Transformation: Callus Mediated Shoot Formation,” Plant Cell Reports, Vol. 23, No. 1-2, 2004, pp. 50-58. doi:10.1007/s00299-004-0791-1
[26] D. Li, K. Zhao, B. Xie, B. Zhang and K. Luo, “Establishment of a Highly Efficient Transformation System for Pepper (Capsicum annuum L.),” Plant Cell Reports, Vol. 21, No. 8, 2003, pp. 785-788.
[27] M. Manoharan, C. S. Sree Vidya and G. Lakshmi Sita, “Agrobacterium mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala),” Plant Science, Vol. 131, No. 1, 1998, pp. 77-83. doi:10.1016/S0168-9452(97)00231-8
[28] V. Mihalka, M. Fari, A. Szasz, E. Balazs and I. Nagy, “Optimised Protocols for Efficient Plant Regeneration and Gene Transfer in Pepper (Capsicum annuum L.),” Journal of Plant Biotechnology, Vol. 2, No. 2, 2000, pp. 143-149.
[29] H. Lot, J. Marrou, J. B. Quiot and C. Esvan, “Contribution a l’Etude du Virus de la Mosaique du Concombre (CMV),” Annals of Phytopathology, Vol. 4, No. 1, 1972, pp. 25-38.
[30] F. Schwach, G. Adam and C. Heinze, “Expression of a Modified Nucleocapsidprotein of Tomato spotted wilt virus (TSWV) Confers Resistance against TSWV and Groundnut ringspot virus (GRSV) by Blocking Systemic Spread,” Molecular Plant Pathology, Vol. 5, No. 4, 2004, pp. 309-316. doi:10.1111/j.1364-3703.2004.00229.x
[31] W. Menzel, W. Jelkmann and E. Maiss, “Detection of Four Apple Viruses by Multiplex RTPCR Assays with Coamplification of Plant mRNA as Internal Control,” Journal of Virological Methods, Vol. 99, No. 1-2, 2002, pp. 81-92. doi:10.1016/S0166-0934(01)00381-0
[32] R. B. Horsch, J. E. Fry, N. L. Hoffmann, D. Eichholtz, S. G. Rogers and R. T. Fraley, “A Simple and General Method for Transferring Genes into Plants,” Science, Vol. 111, No. 4691, 1985, pp. 1229-1231.
[33] T. Murashige and F. K. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[34] D. Baulcombe, “RNA Silencing in Plants,” Nature, Vol. 431, No. 7006, 2004, pp. 356-363. doi:10.1038/nature02874
[35] S. J. Yang, S. A. Carter, A. B. Cole,N. H. Cheng and R. S. Nelson, “A Natural Variant of a Host RNA Dependent RNA Polymerase Is Associated with Increased Susceptibility to Viruses by Nicotiana benthamiana,” Proceedings of the National Academy of Sciences USA, Vol. 101, No. 16, 2004, pp. 6297-6302. doi:10.1073/pnas.0304346101
[36] P. M. Waterhouse, M. B. Wang and T. Lough, “Gene Silencing as an Adaptive Defence against Virus,” Nature, Vol. 411, No. 6839, 2001, pp. 834-842. doi:10.1038/35081168
[37] S. B. Gelvin, “Agrobacterium and Plant Transformation: The Biology behind the ‘Gene Jockeying’ Tool,” Microbiology and Molecular Biology Reviews, Vol. 67, No. 1, 2003, pp. 16-37. doi:10.1128/MMBR.67.1.16-37.2003
[38] Y. Itoh, J. M. Watson, D. Haas and T. Leisinger, “Genetic and Molecular Characterization of the Pseudomonas Plasmid pVS1,” Plasmid, Vol. 11, No. 3, 1984, pp. 206-220. doi:10.1016/0147-619X(84)90027-1
[39] M. Bevan, “Binary Agrobacterium Vectors for Plant Transformation,” Nucleic Acids Research, Vol. 12, No. 22, 1984, pp. 8711-8721. doi:10.1093/nar/12.22.8711
[40] K. Kalanditis, S. Psarsdakis, M. Tabler and M. Tsagris, “The Occurrence of CMV Specific Short RNAs in Transgenic Tobacco Expressing Virus Derived Doublestranded RNA Is Indicative of Resistance to the Virus,” Molecular Plant Microbe Interaction, Vol. 15, No. 8, 2002, pp. 826-833. doi:10.1094/MPMI.2002.15.8.826
[41] Y. K. Chen, D. Lohuis, R. Goldbach and M. Prins, “High Frequency Induction of RNA Mediated Resistance against Cucumber mosaic virus Using Inverted Repeat Constructs,” Molecular Breeding, Vol. 14, No. 3, 2004, pp. 216-225. doi:10.1023/B:MOLB.0000047769.82881.f5
[42] S. Z. Pang, F. J. Jan and D. Gonsalves, “Nontarget DNA Sequences Reduce the Transgene Length Necessary for RNA Mediated Tospovirus Resistance in Transgenic Plants,” Proceedings of the National Academy of Sciences USA, Vol. 94, No. 94, 1997, pp. 8261-8266. doi:10.1073/pnas.94.15.8261
[43] C. Rudolph, P. H. Schreier and J. F. Uhrig, “Peptide-Mediated Broad-Spectrum Plant Resistance to Tospoviruses,” Proceedings of the National Academy of Sciences USA, Vol. 100, No. 8, 2003, pp. 4429-4434. doi:10.1073/pnas.0730832100
[44] W. G. Dougherty and T. D. Parks, “Transgenes and Gene Suppression: Telling Us Something New?” Current Opinion in Cell Biology, Vol. 7, No. 3, 1995, pp. 399-405. doi:10.1016/0955-0674(95)80096-4
[45] J. Schubert, J. Matou?ek and D. Mattern, “Pathogen-derived Resistance in Potato to Potato virus Y: Aspects of Stability and Biosafety under Field Conditions,” Virus Research, Vol. 100, No. 1, 2004, pp. 41-50. doi:10.1016/j.virusres.2003.12.013
[46] J. L. Abad, G. Anastasio, M. A. Fraile and F. García Arenal, “A Search for Resistance to Cucumber mosaic virus in the Genus Lycopersicon,” Journal of Plant Pathology, Vol. 82, No. 1, 2000, pp. 39-48.
[47] C. Ritzenthaler, “Resistance to Plants Viruses: Old Issue, New Answers?” Current Opinion in Biotechnology, Vol. 16, No. 2, 2005, pp. 118-122. doi:10.1016/j.copbio.2005.02.009
[48] C. Reichel, J. Mathur, P. Eckes, K. Langenkemper, C. Koncz, J. Schell, B. Reiss and C. Maas, “Enhanced Green Fluorescence by the Expression of an Aequorea Victoria Green Fluorescent Protein Mutant in Mono and Dicotyledonous Plant Cells,” Proceedings of the National Academy of Sciences USA, Vol. 93, No. 12, 1996, pp. 5888-5893. doi:10.1073/pnas.93.12.5888
[49] R. Higuchi, B. Krummel and R. K. Saiki, “A General Method of in Vitro Preparation and Specific Mutagenesis of DNA Fragements: Study of Protein and DNA Interactions,” Nucleic Acids Research, Vol. 16, No. 15, 1998, pp. 7351-7367. doi:10.1093/nar/16.15.7351

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.