Share This Article:

Inhomogeneous Hardness Distribution of High Pressure Torsion Processed IF Steel Disks

Full-Text HTML Download Download as PDF (Size:1291KB) PP. 234-239
DOI: 10.4236/msa.2012.34034    3,565 Downloads   5,839 Views   Citations


The inhomogeneous hardness distribution of high pressure torsion (HPT) processed IF steel disks along different directions is investigated. The results indicated that there exists inhomogeneous distribution in HPT processed IF steel disks, giving lower hardness in the center and higher hardness in the edge regions. However, on the axisymmetrical section testing plane of the disks’ thickness direction, there is a soft zone near the surface of disks. Further results from radius testing plane of different depths from the surface of HPT processed disks show that the inhomogeneity rules of hardness distribution on the radius direction are similar to that on the thickness direction. Compared with the initial state, different stages of HPT (compression and compression + torsion) can both remarkably increase the hardness of IF steel disks. Microstructure investigation results can give a well support to verify the rules of hardness distribution, showing hardly no change of grains in center and sever plastic deformation in edge. The inhomogeneous distribution of stress and strain with the huge friction between anvil and disks in the process of HPT play an important role of hardness and microstructure distribution.

Cite this paper

Y. Song, W. Wang, D. Gao, H. Kim, E. Yoon, D. Lee, C. Lee and J. Guo, "Inhomogeneous Hardness Distribution of High Pressure Torsion Processed IF Steel Disks," Materials Sciences and Applications, Vol. 3 No. 4, 2012, pp. 234-239. doi: 10.4236/msa.2012.34034.


[1] C. Xu, Z. Horita and T. G. Langdon, “The Evolution of Homogeneity in an Aluminum Alloy Processed Using High-Pressure Torsion,” Acta Materialia, Vol. 56, No. 18, 2008, pp. 5168-5176. doi:10.1016/j.actamat.2008.06.036
[2] C. Xum Z. Horita and T. G. Langdon, “Evaluating the Influence of Pressure and Torsional Strain on Processing by High-Pressure Torsion,” Journal of Materials Science, Vol. 43, No. 23-24, 2008, pp. 7286-7292. doi:10.1007/s10853-008-2624-z
[3] A. P. Zhilyaev, A. A. Gimazov, E. P. Soshnikova, á. Révész and T. G. Langdon, “Microstructural Characteris- tics of Nickel Processed to Ultrahigh Strains by High- Pressure Torsion,” Materials Science and Engineering A, Vol. 489, No. 1-2, 2008, pp. 207-212. doi:10.1016/j.msea.2007.12.031
[4] A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon and T. R. McNelley, “Microstructural Evolution in Commercial Pu- rity Aluminum during High Pressure Torsion,” Materials Science and Engineering A, 2005, Vol. 410-411, pp. 277- 280. doi:10.1016/j.msea.2005.08.044
[5] A. P. Zhilyaev and T. G. Langdon, “Using High-Pressure Torsion for Metal Processing: Fundamentals and Appli- cations,” Progress in Materials Science, Vol. 53, No. 6, 2008, pp. 893-979. doi:10.1016/j.pmatsci.2008.03.002
[6] N. Lugo. N. Llorca. J. M. Cabrera and Z. Horita, “Micro- structures and Mechanical Properties of Pure Copper De- formed Severely by Equal-Channel Angular Pressing and High Pressure Torsion,” Materials Science and Engineer- ing: A, Vol. 477, No. 1-2, 2008, pp. 366-371. doi:10.1016/j.msea.2007.05.083
[7] L. Kurmanaeva. Y. Ivanisenko. J. Markmann. C. Kübel, A. Chuvilin. S. Doyle. R. Z. Valiev and H. J. Fecht, “Grain Refinement and Mechanical Properties in Ul- trafine Grained Pd and Pd-Ag Alloys Produced by HPT,” Materials Science and Engineering: A, Vol. 527, No. 7-8, 2010, pp. 1776-1783. doi:10.1016/j.msea.2009.11.001
[8] R. Z. Caliev, R. K. Islamgaliev and I. P. Semenova, “Su- perplasticity in Nanostructured Materials: New Chal- lenges,” Materials Science and Engineering A, Vol. 463, No. 1-2, 2007, pp. 2-7. doi:10.1016/j.msea.2006.08.121
[9] H. S. Kim, W. S. Ryu, M. Janecek, S. C. Baik and Y. Estrin, “Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of IF Steel,” Advanced Engineering Materials, 2005, Vol. 7, No. 1-2, pp. 43-45. doi:10.1002/adem.200400146
[10] B. Hadzima. M. Janecek. Y. Estrin and H. S. Kim, “Mi- crostructure and Corrosion Properties of Ultrafine-Grained Interstitial Free Steel,” Materials Science and Engineer- ing A, Vol. 462, No. 1-2, 2007, pp. 243-247. doi:10.1016/j.msea.2005.11.081
[11] M. Kawasaki, B. Ahn and T. G. Langdon, “Effect of Strain Reversals on the Processing of High-Purity Alu- minum by High-Pressure Torsion,” Journal of Materials Science, Vol. 45, No. 17, 2010, pp. 4583-4593. doi:10.1007/s10853-010-4420-9
[12] M. Kawasaki, R. Figueiredo and T. G. Langdon, “An Investigation of Hardness Homogeneity throughout Disks Processed by High-Pressure Torsion,” Acta Materialia, Vol. 59, No. 1, 2011, pp. 308-316. doi:10.1016/j.actamat.2010.09.034
[13] S. C. Yoon, A. V. Nagasekhar and H. S. Kim, “Finite Element Analysis of the Bending Behavior of a Work- piece in Equal Channel Angular Pressing,” Metals and Materials International, Vol. 15, 2009, pp. 215-219. doi:10.1007/s12540-009-0215-4
[14] Y. Ivanisenko, W. Lojkowski, R. Z. Valiev and H. T. Fecht, “The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel during High Pressure Torsion,” Acta Materials, Vol. 51, No. 18, 2003, pp. 5555-5570. doi:10.1016/S1359-6454(03)00419-1
[15] M. Kawasaki and T. G. Langdon, “The Significance of Strain Reversals during Processing by High-Pressure Tor- sion,” Materials Science and Engineering A, Vol. 498, No. 1-2, 2008, pp. 341-348. doi:10.1016/j.msea.2008.08.021
[16] Y. P. Li, E. Onodera, H. Matsumoto and A. Chiba, “ Cor- recting the Stress-Strain Curve in Hot Compression Proc- ess to High Strain Level,” Metallurgical and Materials Transaction A, Vol. 40A, No. 4, 2009, pp. 982-990. doi:10.1007/s11661-009-9783-7
[17] D. Shahriari, A. Amiri and M. H. Sadeghi, “Study on Hot Ring Compression Test of Nimonic 115 Superalloy Using Experimental Observations and 3D FEM Simulation,” Journal of Materials Engineering and Performance, Vol. 19, No. 5, 2010, pp. 633-642. doi:10.1007/s11665-009-9522-7

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.