Effects of Baking, Roasting and Frying on Total Polyphenols and Antioxidant Activity in Colored Chickpea Seeds

Download Download as PDF (Size:517KB)  HTML   XML  PP. 369-376  
DOI: 10.4236/fns.2012.33053    4,533 Downloads   9,015 Views   Citations


Chickpea lines with colored testa (seed coat) contain high levels of polyphenolic compounds that exhibit high levels of antioxidant activity. In a previous study, we showed that common processing procedures, such as soaking and cooking, decrease the levels of these bioactive compounds and subsequent overall antioxidant activity. The observed reduction in total phenolic content was due to the movement of polyphenols from the seed coat to the soaking or cooking water. Here, the effects of baking, roasting and frying processes were examined in relation to total phenolic content (TPC), total flavonoid content (TFC) and ferric-reducing ability of plasma antioxidant activity (FRAP AA) of colored chickpea seeds. Baked, fried and roasted colored chickpea seeds had significantly higher levels of TPC, TFC and FRAP AA than regular cream- and beige-colored seeds subjected to the same treatments. In contrast to our previous results with soaking and cooking, baking, frying and roasting retained most of the TPC, TFC and FRAP AA in the final products. Thus, colored chickpeas subjected to these three processing methods might be considered a functional food in addition to its traditional role of providing dietary proteins.

Cite this paper

A. Segev, H. Badani, L. Galili, R. Hovav, Y. Kapulnik, I. Shomer and S. Galili, "Effects of Baking, Roasting and Frying on Total Polyphenols and Antioxidant Activity in Colored Chickpea Seeds," Food and Nutrition Sciences, Vol. 3 No. 3, 2012, pp. 369-376. doi: 10.4236/fns.2012.33053.


[1] U. Singh, N. Subrahmanyam and J. Kumar, “Cooking Quality and Nutritional Attributes of Some Newly Developed Cultivars of Chickpea (Cicer arietinum),” Journal of the Science of Food and Agriculture, Vol. 55, 1991, pp. 37-46. doi:10.1002/jsfa.2740550106
[2] B. Nizakat, B. K. Amal, S. S. K. Gul, M. Zahid and I. Ihsanullah, “Quality and Consumer Acceptability Studies and Their Inter-Relationship of Newly Evolved Desi Type Chickpea Genotypes (Cicer arietinum L.). Quality Evolution of New Chickpea Genotypes,” International Journal of Food Science and Technology, Vol. 42, No. 5, 2007, pp. 528-534. doi:10.1111/j.1365-2621.2006.01246.x
[3] P. B. Geil and J. W. Anderson, “Nutrition and Health Implications of Dry Beans, A Review,” Journal of the American College of Nutrition, Vol. 13, No. 6, 1994, pp. 549-558.
[4] A. Segev, H. Badani, Y. Kapulnik, I. Shomer, M. OrenShamir and S. Galili, “Determination of Polyphenols, Flavonoids and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.),” Journal Food Science, Vol. 75, No. 2, 2010, pp. S115-S119. doi:10.1111/j.1750-3841.2009.01477.x
[5] A. Scalbert, C. Manach and C. Morand, “Dietary Polyphenols and the Prevention of Diseases,” Critical Reviews in Food Science and Nutrition, Vol. 45, No. 4, 2005, pp. 287-306. doi:10.1080/1040869059096
[6] D. Heimler, P. Vignolini, M. G. Dini and A. Romani, “Rapid Tests to Assess the Antioxidant Activity of Phaseolus vulgaris L. Dry Beans,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 8, 2005, pp. 3053-3056. doi:10.1021/jf049001r
[7] L. Azevedo, J. C. Gomes, P. C. Stringheta, A. M. M. C. Gontijo, C. R. Padovani, L. R. Ribeiro and D. M. F. Salvadori, “Black Bean (Phaseolus vulgaris L.) as Protective Agent against DNA Damage in Mice,” Food and Chemical Toxicology, Vol. 41, No. 12, 2003, pp. 1671-1676. doi:10.1016/S0278-6915(03)00173-X
[8] A. Cardador-Martínez, A. Albores, M. Bah, V. Calderón-Salinas, E. Casta?o-Tostado, R. Guevara-González, A. Shimada-Miyasaka and G. Loarca-Pi?a, “Relationship among Antimutagenic Antioxidant and Enzymatic Activities of Methanolic Extract from Common Beans (Phaseolus vulgaris L.),” Plant Foods for Human Nutrition, Vol. 61, No. 4, 2006, pp. 161-168. doi:10.1007/s11130-006-0026-4
[9] A. Cardador-Martinez, G. Loacra-Pina and B. D. Oomah, “Antioxidant Activity in Common Beans (Phaseolus vulgaris L.),” Journal of Agricultural and Food Chemistry, Vol. 50, No. 24, 2002, pp. 6975-6980. doi:10.1021/jf020296n
[10] E. González de Mejía, E. Casta?o-Tostado and G. LoarcaPi?a, “Antimutagenic Effects of Natural Phenolic Compounds in Beans,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, Vol. 441, No. 1, 1999, pp. 1-9. doi:10.1016/S1383-5718(99)00040-6
[11] X. Aparicio-Fernández, R. Reynoso-Camacho, E. Casta?o-Tostado, T. García-Gasca, E. González de Mejía, S. Guzmán-Maldonado, G. Elizondo, G. G. Yousef, M. A. Lila and G. Loarca-Pi?a, “Antiradical Capacity and Induction of Apoptosis in HeLa Cells by a Phaseolus vulgaris Extract,” Plant Foods for Human Nutrition, Vol. 63, 2008, pp. 35-40. doi:10.1007/s11130-007-0066-4
[12] X. Aparicio-Fernandez, T. Garc?a-Gasca, G. G. Yousef, M. A. Lila, E. Gonzalez de Mejia and G. Loarca-Pina. “Chemopreventive Activity of Polyphenolics from Black Jamapa Bean (Phaseolus vulgaris L.) on HeLa HaCaT Cells,” Journal of Agricultural and Food Chemistry, Vol. 54, 2006, pp. 2116-2122. doi:10.1021/jf052974m
[13] M. Dong, X. He and R. H. Liu, “Phytochemicals of Black Bean Seed Coats: Isolation, Structure Elucidation and Their Antiproliferative and Antioxidative Activities,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 20, 2007, pp. 6044-6051. doi:10.1021/jf070706d
[14] R. Amarowicz and B. Raab, “Antioxidative Activity of Leguminous Seed Extracts Evaluated by Chemiluminescence Methods,” Zeitschrift fur Naturforschung, Vol. 52, No. 10, 1997, pp. 709-712.
[15] M. Carbonaro, F. Virgili and E. Carnovale, “Evidence for Protein-Tannin Interaction in Legumes: Implications in the Antioxidant Properties of Faba Bean Tannins,” Lebensmittel-Wissenschaft und Technologie, Vol. 29, No. 8, 1996, pp. 743-750. doi:10.1006/fstl.1996.0116
[16] F. Shahidi, U. D. Chavan, M. Naczk and R. Amarowicz, “Nutrient Distribution and Phenolic Antioxidants in AirClassified Fractions of Beach Pea (Lathyrus maritimus L.),” Journal of Agricultural and Food Chemistry, Vol. 49, No. 2, 2001, pp. 926-933. doi:10.1021/jf0005317
[17] P. D. Duh, W. J. Yen, P. C. Du and G. C. Yen, “Antioxidant Activity of Mung Bean Hulls,” Journal of the American Oil Chemists Society, Vol. 74, No. 9, 1997, pp. 1059-1063. doi:10.1007/s11746-997-0025-0
[18] R. Amarowicz, M. Karamac and U. Chavan, “Influence of the Extraction Procedure on the Antioxidative Activity of Lentil Seed Extracts in a b-Carotene-Linoleate Model System,” Grasas y Aceites, Vol. 52, 2001, pp. 89-93. doi:10.3989/gya.2001.v52.i2.378
[19] Y. Shem-Tov, S. Galili, H. Badani, A. Segev, I. Hedvat and R. Hovav, “Determination of Total Polyphenol, Flavonoid and Anthocyanin Contents and Antioxidant Capacities of Skins from Peanut (Arachis hypogaea) Lines with Different Skin Colors,” Journal of Food Biochemistry, 2011, Article in Press.
[20] H. Han and B.-K. Baik, “Antioxidant Activity and Phenolic Content of Lentils (Lens culinaris), Chickpeas (Cicer arietinum L.), Peas (Pisum sativum L.) and Soybeans (Glycine max) and Their Quantitative Changes during Processing,” International Journal of Food Science and Technology, Vol. 43, No. 11, 2008, pp. 1971-1978. doi:10.1111/j.1365-2621.2008.01800.x
[21] B. Xu and S. K. C. Chang, “Effect of Soaking, Boiling and Steaming on Total Phenolic Content and Antioxidant Activities of Cool Season Food Legumes,” Food Chemistry, Vol. 110, No. 1, 2008, pp. 1-13. doi:10.1016/j.foodchem.2008.01.045
[22] B. J. Xu and S. K. C. Chang, “A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents,” Journal of Food Science, Vol. 72, No. 2, 2007, pp. S159-S166. doi:10.1111/j.1750-3841.2006.00260.x
[23] M. Kaur, N. Singh and N. Singh Sodhi, “Physicochemical, Cooking, Textural and Roasting Characteristics of Chickpea (Cicer arietinum L.) Cultivars,” Journal of Food Engineering, Vol. 69, No. 4, 2005, pp. 511-517. doi:10.1016/j.jfoodeng.2004.09.002
[24] K. K. Bhat and S. Bhattacharya, “Deep Fat Frying Characteristics of Chickpea Flour Suspensions,” International Journal of Food Science and Technology, Vol. 36, 2001, pp. 499-507. doi:10.1046/j.1365-2621.2001.00455.x
[25] M. Gómeza, B. Olietea, C. M. Rosellb, V. Pandoc and E. Fernández, “Studies on Cake Quality Made of WheatChickpea Flour Blends,” Food Science and Technology, Vol. 41, No. 9, 2008, pp. 1701-1709.
[26] ?. ?. A?ar, V. G?kmen, N. Pellegrini and V. Fogliano, “Direct Evaluation of the Total Antioxidant Capacity of Raw and Roasted Pulses, Nuts and Seeds,” European Food Research and Technology, Vol. 229, No. 6, 2009, pp. 961-969. doi:10.1007/s00217-009-1131-z
[27] C. F. Chau, P. C. Cheung and Y. S. Wong, “Effect of Cooking on Content of Amino Acids and Antinutrients in Three Chinese Indigenous Legume Seeds,” Journal of the Science of Food and Agriculture, Vol. 75, 1997, pp. 447452. doi:10.1002/(SICI)1097-0010(199712)75:4<447::AID-JSFA896>3.0.CO;2-5
[28] C. K. Hira and N. Chopra, “Effects of Roasting on Protein Quality of Chickpea (Cicer arietinum) and Peanut (Arachis hypogaea),” Journal of Food Science and Technology, Vol. 32, 1995, pp. 501-503.
[29] V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventos, “Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent,” Methods in Enzymology, Vol. 299, 1999, pp. 152-178. doi:10.1016/S0076-6879(99)99017-1
[30] V. L.Singleton and J. A. Rossi, “Colorimetry of Total Phenolic with Phosphomolybdicphosphotungstic Acid Reagents,” American Journal of Enology and Viticulture, Vol. 16, No. 3, 1965, pp. 144-158.
[31] I. F. F. Benzie and J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay,” Analytical Biochemistry, Vol. 239, No. 1, 1996, pp. 70-76. doi:10.1006/abio.1996.0292
[32] A. Segev, H. Badani, L. Galili, R. Hovav, Y. Kapulnik, I. Shomer and S. Galili, “Total Phenolic Content and Antioxidant Activity of Chickpea (Cicer arietinum L.) as Affected by Soaking and Cooking Conditions,” Food and Nutrition Sciences, Vol. 2, 2011, pp. 724-730. doi:10.4236/fns.2011.27099
[33] M. Lindenmeier and T. Hofmann, “Influence of Baking Conditions and Precursor Supplementation on the Amounts of the Antioxidant Pronyl-L-Lysine in Bakery Products,” Journal of Agricultural and Food Chemistry, Vol. 52, 2004, pp. 350-354. doi:10.1021/jf0346657
[34] G. J. McDougall, P. Dobson and N. Jordan-Mahy, “Effect of Different Cooking Regimes on Rhubarb Polyphenols,” Food Chemistry, Vol. 119, 2010, pp. 758-764. doi:10.1016/j.foodchem.2009.07.030
[35] K. B. Miller, D. A. Stuart, N. L. Smith, C. Y. Lee, N. L. Mchale, J. A. Flanagan, B. Ou and W. J. Hurst, “Antioxidant Activity and Polyphenol and Procyanidin Contents of Selected Commercially Available Cocoa-Containing and Chocolate Products in the United States,” Journal of Agricultural and Food Chemistry, Vol. 54, No. 11, 2006, pp. 4062-4068. doi:10.1021/jf060290o
[36] L. Stahl, K. B. Miller, J. Apgar, D. S. Sweigart, D. A. Stuart, N. McHale, B. Ou, M. Kondo and W. J. Hurst. “Preservation of Cocoa Antioxidant Activity, Total Polyphenols, Flavan-3-ols, and Procyanidin Content in Foods Prepared with Cocoa Powder,” Journal of Food Science, Vol. 74, No. 6, 2009, pp. C456-C461. doi:10.1111/j.1750-3841.2009.01226.x
[37] D. P. Makris and J. T. Rossiter, “Domestic Processing of Onion Bulbs (Allium cepa) and Asparagus Spears (Asparagus officinalis): Effect on Flavonol Content and Antioxidant Status,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 7, 2001, pp. 3216-3222. doi:10.1021/jf001497z
[38] K. R. Price and M. J. C. Rhodes, “Analysis of the Major Flavonol Glycosides Present in Four Varieties of Onion (Allium cepa) and Changes in Composition Resulting from Autolysis,” Journal of the Science of Food and Agriculture, Vol. 74, No. 3, 1997, pp. 331-339. doi:10.1002/(SICI)1097-0010(199707)74:3<331::AID-JSFA806>3.0.CO;2-C
[39] F. Hayase, S. Hirashima, G. Okamoto and H. Kato, “Scavenging of Active Oxygens by Melanoidins,” Agricultural and Biological Chemistry, Vol. 54, No. 6, 1990, pp. 855-862.
[40] G. C. Yen and P. P. Hsieh, “Antioxidative Activity and Scavenging Effects on Active Oxygen of Xylose-Lysine Maillard Reaction Products,” Journal of the Science of Food and Agriculture, Vol. 67, 1995, pp. 415-420. doi:10.1002/jsfa.2740670320
[41] A. Jokic, M. C. Wang, C. Liu, A. I. Frenkel and P. M. Huang, “Integration of the Polyphenol and Maillard Reactions into a Unified Abiotic Pathway for Humification in Nature: the Role of Delta-MnO2,” Organic Geochemistry, Vol. 35, No. 6, 2004, pp. 747-762. doi:10.1016/j.orggeochem.2004.01.021
[42] M. K. Lee and I. Park, “Inhibition of Potato Polyphenol Oxidase by Maillard Reaction Products,” Food Chemistry, Vol. 91, 2005, pp. 57-61. doi:10.1016/j.foodchem.2004.05.046
[43] H. Sahin, A. Topuz, M. Pischetsrieder and F. Ozdemir, “Effect of Roasting Process on Phenolic, Antioxidant and Browning Properties of Carob Powder,” European Food Research and Technology, Vol. 230, No. 1, 2009, pp. 155-161. doi:10.1007/s00217-009-1152-7
[44] G. Durmaz and M. Alpaslan, “Antioxidant Properties of Roasted Apricot (Prunus armeniaca L.) Kernel,” Food Chemistry, Vol. 100, No. 3, 2007, pp. 1177-1181. doi:10.1016/j.foodchem.2005.10.067

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.