Distinct Global Patterns of Strong Positive and Negative Shifts of Seasons over the Last 6 Decades

Download Download as PDF (Size:1446KB)  HTML    PP. 76-88  
DOI: 10.4236/acs.2012.21009    4,404 Downloads   8,456 Views   Citations


Alterations of annual temperature cycles have profound implications on how the planet responds to global climate change. In this study, a high resolution global analysis of temperature cycle shifts and their development over time is presented. We show that over the last 63 years, phase shifts in the annual near surface temperature cycle exhibit large spatiotemporal variability. The calculated phase shifts comprise earlier onsets of seasons as well as delays with similar frequencies, depending on location. From 1978 to 2010 Eastern Europe experienced an advanced annual cycle of near-surface temperature of 3.2 days while Eastern Australia shows an opposite shift towards later seasons of 3.5 days in comparison to the preceding 30-year period from 1948 to 1977. The largest phase shifts of –5.5 days toward earlier seasons over land were found in Belarus and Northwest Russia. For the first time the developments of seasonal temperature shifts were generalized for large areas by using self-organizing feature map neural networks resulting into 4 significant global trends. The temperature phase shifts are also shown to have strong correlations with the timing of shrub foliation observed at 57 phenological stations across the USA. The findings have far-reaching, yet regionally distinct consequences on agriculture, animal life cycles, plant phenology, and regional weather phenomena that change with annual temperature cycles.

Cite this paper

A. Schmidt, B. Law, C. Hanson and O. Klemm, "Distinct Global Patterns of Strong Positive and Negative Shifts of Seasons over the Last 6 Decades," Atmospheric and Climate Sciences, Vol. 2 No. 1, 2012, pp. 76-88. doi: 10.4236/acs.2012.21009.


[1] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, et al. Eds., “Climate Change 2007: The Physical Science Basi,” Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007, p. 996.
[2] J. Hansen, R. Ruedy, J. Glascoe and M. Sato, “GISS analysis of surface temperature change,” Journal of Geophysical Research, Vol. 104, No. D24, 1999, pp. 30997- 31022. doi:10.1029/1999JD900835
[3] J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea and M. Medina-Elizade, “Global Temperature Change,” Proceedings of the National Academy of Sciences, Vol. 103, No. 39, 2006, pp. 14288-14293. doi:10.1073/pnas.0606291103
[4] P. A. Agudelo and J. A. Curry, “Analysis of Spatial Distribution in Tropospheric Temperature Trends,” Geophysical Research Letters, Vol. 31, 2004, Article ID: L22207. doi:10.1029/2004GL020818
[5] J. Hansen, R. Ruedy, M. Sato and K. Lo, “Global Surface Temperature Change,” Reviews of Geophysics, Vol. 48, No. 4, 2010, Article ID: RG4004. doi:10.1029/2010RG000345
[6] D. J. Thomson, “The Seasons, Global Temperature, and Precession,” Science, Vol. 268, No. 5207, 1995, pp. 59- 68. doi:10.1126/science.268.5207.59
[7] M. Mann and J. Park, “Greenhouse Warming and Changes in the Seasonal Cycle of Temperature: Model Versus Observations,” Geophysical Research Letter, Vol. 23, No. 10, 1996, pp. 1111-1114. doi:10.1029/96GL01066
[8] C. J. Wallace and T. J. Osborn, “Recent and Future Modulation of the Annual Cycle,” Climate Research, Vol. 22, No. 1, 2002, pp. 1-11. doi:10.3354/cr022001
[9] M. Palus, D. Novotna and P. Tichavsky, “Shifts of Seasons at the European Mid-Latitudes: Natural Fluctuations Correlated with the North Atlantic Oscillation,” Geophysical Research Letter, Vol. 32, 2005, Article ID: L12805.
[10] A. R. Stine, P. Huybers and I. Y. Fung, “Changes in the Phase of the Annual Temperature Cycle of Surface Temperature,” Nature, Vol. 457, No. 7228, 2009, pp. 435-440. doi:10.1038/nature07675
[11] C. Qian, C. Fu, Z. Wu and Z. Yan, “The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China,” Advances in Atmospheric Sciences, Vol. 28, No. 2, 2011, pp. 284-296. doi:10.1007/s00376-010-9221-1
[12] A. Aasa, J. Jaagus, R. Ahas and M. Sepp, “The Influence of Atmospheric Circulation on Plant Phenological Phases in Central and Eastern Europe,” International Journal of Climatology, Vol. 24, No. 12, 2004, pp. 1551-1564. doi:10.1002/joc.1066
[13] K. M. De Beurs and G. M. Henebry, “Northern Annular Mode Effects on the Land Surface Phenologies of Northern Eurasia,” Journal of Climate, Vol. 21, 2008, pp. 4257-4279. doi:10.1175/2008JCLI2074.1
[14] D. J. Kang and H. J. Wang, “Analysis on the Decadal Scale Variation of the Dust Storm in North China,” Science in China Series D, Vol. 48, No. 12, 2005, pp. 2260- 2266. doi:10.1360/03yd0255
[15] A. Menzel, T. H. Sparks, N. Estrella, E. Koch, A. Aasa, et al., “European Phenological Response to Climate Change Matches the Warming Pattern,” Global Change Biology, Vol. 12, No. 10, 2006, pp. 1969-1976. doi:10.1111/j.1365-2486.2006.01193.x
[16] T. L. Root, J. T. Price, K. R. Hall, S. H. Schneider and C. Rosenzweig, et al. “Fingerprints of Global Warming on Wild Animals and Plants,” Nature, Vol. 421, 2003, pp. 57-60. doi:10.1038/nature01333
[17] M. D. Schwartz, R. Ahas and A. Aasa, “Onset of spring starting earlier across the Northern Hemisphere,” Global Change Biology, Vol. 12, No. 2, 2006, pp. 343-351. doi:10.1111/j.1365-2486.2005.01097.x
[18] D. Dragoni, H. P. Schmid, C. A. Wayson, H. Potter, C. S. B. Grimmond, et al. “Evidence of Increased Net Ecosystem Productivity Associated with a Longer Vegetated Season in a Deciduous Forest in South-Central Indiana, USA,” Global Change Biology, Vol. 17, No. 2, 2011, pp. 886-897. doi:10.1111/j.1365-2486.2010.02281.x
[19] C. Parmesan, “Influences of Species, Latitudes and Methodologies on Estimates of Phenological Response to Global Warming,” Global Change Biology, Vol. 13, No. 9, 2007, pp. 1860-1872. doi:10.1111/j.1365-2486.2007.01404.x
[20] A. L. Westerling, H. G. Hidalgo, D. R. Cayan and T. W. Swetnam, “Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity,” Science, Vol. 18, 2006, pp. 940-943. doi:10.1126/science.1128834
[21] G. M. Jenkins and D. G. Watts, “Spectral Analysis and Its Applications,” Holden-Day, San Francisco, 1968, p. 525.
[22] M. B. Priestley, “Spectral Analysis and Time Series,” Academic Press, London, 1981, p. 890.
[23] T. Kohonen, “Self-Organization and Associative Memory,” Springer, New York, 3rd Edition, 1998, p. 312.
[24] T. Kohonen, “The Self-Organizing Map,” Proceedings of IEEE, Vol. 78, No. 9, 1990, pp. 1464-1480. doi:10.1109/5.58325
[25] World Meteorological Organization, “Calculation of Monthly and Annual 30-Year Standard Normals,” World Meteorological Organization, Geneva, 1989.
[26] World Meteorological Organization, “The Role of Climatological Normals in a Changing Climate,” WCDMP- No. 61, WMO-TD/No. 1377, World Meteorological Organization, Geneva, 2007.
[27] T. Smith, M. Thomas, R. W. Reynolds, T. C. Peterson and J. Lawrimore, “Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880-2006),” Journal of Climate, Vol. 21, No. 10, 2008, pp. 2283-2296. doi:10.1175/2007JCLI2100.1
[28] NOAA National Climatic Data Center. http://www.ncdc.noaa.gov/sotc/global
[29] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D Deaven, et al. “The NCEP/NCAR 40-Year Reanalysis Project,” Bulletin of the American Meteorological Society, Vol. 77, no. 3, 1996, pp. 437-471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[30] The NOAA Earth System Research Laboratory, Physical Science Division. http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
[31] R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, et al., “The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation,” Bulletin of the American Meteorological Society, Vol. 82, No. 2, 2001, pp. 247-267. doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
[32] D. Barriopedro, E. M. Fischer, J. Luterbacher, R. M. Trigo and R. García-Herrera, “The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe,” Science, Vol. 332, No. 6026, 2011, pp. 220-224. doi:10.1126/science.1201224
[33] X.-Z. Wang, M. Yoshizawa, A. Tanaka, K. Abe, K. Imachi, et al., “An Automatic Monitoring System for Artificial Hearts Using a Hierarchical Self-Organizing Map,” The International Journal of Artificial Organs, Vol. 4, No. 3, 2001, pp. 198-204. doi:10.1007/BF02479894
[34] N. Tigrine-Kordjani, F. Chemat, B. Y. Meklati, L. Tuduri, J. L. Giraudel, et al., “Relative Characterization of Rosemary Samples According to Their Geographical Origins Using Microwave-Accelerated Distillation, Solid-Phase Micro Extraction and Kohonen Self-Organizing Maps,” Analytical and Bioanalytical Chemistry, Vol. 389, No. 2, 2007, pp. 631-641. doi:10.1007/s00216-007-1441-6
[35] U. S. N. Murty, A. K. Banerjee and N. Arora, “Application of Kohonen Maps for Solving the Classification Puzzle in AGC Kinase Protein Sequences,” Interdisciplinary Sciences Computational Life Sciences, Vol. 1, No. 3, 2009, pp. 173-178. doi:10.1007/s12539-009-0032-1
[36] A. Schmidt, C. Hanson, J. Kathilankal and B. E. Law, “Classification and Assessment of Turbulent Fluxes above Ecosystems in North-America with Self-Organizing Feature Map Networks,” Agricultural and Forest Meteorology, Vol. 151, No. 4, 2011, pp. 508-520. doi:10.1016/j.agrformet.2010.12.009
[37] E. Arsuaga-Uriarte and F. Diaz-Martin, “Topology Preservation in SOM,” International Journal of Applied Mathematics and Computer Science, Vol. 1, No. 1, 2005, pp. 19-22.
[38] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1, No. 2, 1979, pp. 224-227. doi:10.1109/TPAMI.1979.4766909
[39] A. K. Jain and R. C. Dubes, “Algorithms for Clustering Data,” Prentice Hall, Englewood Cliffs, 1988, p. 334.
[40] U. Maulik and S. Bandyopadhyay, “Performance Evaluation of Some Clustering Algorithms and Validity Indices,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 12, 2002, pp. 1650-1654. doi:10.1109/TPAMI.2002.1114856
[41] L. B. Webb, P. H. Whetton and E. W. R. Barlow, “Observed Trends in Winegrape Maturity in Australia,” Global Change Biology, Vol. 17, No. 8, 2011, pp. 2707- 2719. doi:10.1111/j.1365-2486.2011.02434.x
[42] J. A Carton and Z. Zhou, “Annual Cycle of Sea Surface Temperature in the Tropical Atlantic Ocean,” Journal of Geophysical Research, Vol. 102, No. C13, 1997, pp. 27813-27824. doi:10.1029/97JC02197
[43] P. Knudsen, O. B. Andersen and T. Knudsen, “Annual Cycles of ERS-1 Altimetric Sea Surface Height Data and ATSR Sea Surface Temperature Data,” 3rd ERS Symp. On Space at the Service of our Environment, Florence, 17-21 March 1997.
[44] M. D. Schwartz, “Monitoring Global Change with Phenology: The Case of the Spring Green Wave,” International Journal of Biometeorology, Vol. 38, No. 1, 1994, pp. 18-22. doi:10.1007/BF01241799
[45] M. D. Schwartz and B. E. Reiter, “Changes in North American Spring,” International Journal of Climatology, Vol. 20, No. 8, 2000, pp. 929-932. doi:10.1002/1097-0088(20000630)20:8<929::AID-JOC557>3.0.CO;2-5
[46] D. R. Cayan, S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio and D. H. Peterson, “Changes in the Onset of Spring in the Western United States,” Bulletin of the American Meteorological Society, Vol. 82, No. 3, 2001, pp. 399-415. doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2
[47] T. Imaizumi and S. A. Kay, “Photoperiodic Control of Flowering: Not Only by Coincidence,” Trends in Plant Science, Vol. 11, No. 11, 2006, pp. 550-558. doi:10.1016/j.tplants.2006.09.004
[48] J. Repkova, M. Brestic and K. Olsovska, “Leaf Growth under Temperature and Light Control,” Plant, Soil and Environment, Vol. 55, No. 12, 2009, pp. 551-557.
[49] B. Min, “Comparison of Phenological Characteristics for Several Woody Plants in Urban Climates,” Journal of Plant Biology, Vol. 43, No. 1, 2000, pp. 10-17. doi:10.1007/BF03031030
[50] J. Vesanto and E. Alhoniemi, “Clustering of the Self-Organizing Map,” IEEE Transactions on Neural Networks, Vol. 11, No. 3, 2000, pp. 586-600. doi:10.1109/72.846731

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.