Bioactive Fatty Acids Reduce Development of Gastric Cancer Following Duodenogastric Reflux in Rats
Bjørn Jostein Christensen, Kjetil Berge, Hege Wergedahl, Pavol Bohov, Rolf Kristian Berge, Einar Svendsen, Asgaut Viste
.
Department of Surgical Sciences, University of Bergen, Bergen, Norway; Department of Gastrointestinal and Acute Surgery, Haukeland University Hospital, Bergen, Norway.
Faculty of Education, Section for Food and Health, Bergen University College, Bergen, Norway.
Institute of Medicine, University of Bergen, Bergen, Norway.
Institute of Medicine, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
The Gade Institute, Section of Pathology, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
DOI: 10.4236/ss.2012.31006   PDF    HTML     4,235 Downloads   6,812 Views   Citations

Abstract

Background: Bioactive fatty acids such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the modified fatty acid analogue, tetradecylthioacetic acid (TTA), are known to influence inflammatory processes in the body. Our aim was to investigate if diets containing fish oil (FO) enriched with bioactive fatty acids could affect inflammation and development of glandular stomach carcinogenesis in a duodenogastric reflux (DGR) animal model. We also wanted to evaluate if a high-fat diet might increase the risk of developing gastric cancer compared to a low-fat diet. Methods: 185 rats operated on with a gastroenterostomy were randomly allocated to 5 different treatment groups given: low-fat, high-fat, high-fat + FO, high-fat + TTA or high-fat + FO + TTA. The stomachs were removed after 50 weeks and examined by light microscopy with hematoxylin and eosin staining (HE). Immunohistochemical staining against COX-2, PCNA and p53 was performed when adenocarcinomas were found. The plasma fatty acid profile was determined. Results: Adenocarcinomas developed in 21% of animals fed the low-fat diet, 35% in the high-fat group, 16% in the high-fat + TTA group, 21% in the high-fat + FO group and 8.6% in the high-fat + FO + TTA treatment group. COX-2 and PCNA were positive whereas p53 was negative in the majority of the samples. The anti-inflammatory fatty acid index increased after treatment with FO and in combination with FO and TTA. Conclusion: FO and TTA in combination with a high-fat diet significantly lower the risk of developing adenocarcinomas in rats subjected to duodenogastric reflux. This is most likely due to a selective modulation of inflammation.

Share and Cite:

B. Christensen, K. Berge, H. Wergedahl, P. Bohov, R. Berge, E. Svendsen and A. Viste, "Bioactive Fatty Acids Reduce Development of Gastric Cancer Following Duodenogastric Reflux in Rats," Surgical Science, Vol. 3 No. 1, 2012, pp. 34-42. doi: 10.4236/ss.2012.31006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet and P. Boyle, “Estimates of the Cancer Incidence and Mortality in Europe in 2006,” Annals of Oncology, Vol. 18, No. 3, 2007, pp. 581-592. doi:10.1093/annonc/mdl498
[2] D. M. Parkin, F. Bray, J. Ferlay and P. Pisani, “Global Cancer Statistics, 2002,” Cancer Journal for Clinicians, Vol. 55, No. 2, 2005, pp. 74-108. doi:10.3322/canjclin.55.2.74
[3] C. Prinz, S. Schwendy and P. Voland, “H Pylori and Gastric Cancer: Shifting the Global Burden,” World Journal of Gastroenterology, Vol. 12, No. 34, 2006, pp. 5458-5464.
[4] H. Brenner, D. Rothenbacher and V. Arndt, “Epidemiology of Stomach Cancer,” Methods in Molecular Biology, Vol. 472, 2009, pp. 467-477. doi:10.1007/978-1-60327-492-0_23
[5] K. D. Crew and A. I. Neugut, “Epidemiology of Gastric Cancer,” World Journal of Gastroenterology, Vol. 12, No. 3, 2006, pp. 354-362.
[6] S. Bahmanyarand and W. Ye, “Dietary Patterns and Risk of Squamous-Cell Carcinoma and Adenocarcinoma of the Esophagus and Adenocarcinoma of the Gastric Cardia: a Population-Based Case-control Study in Sweden,” Nutrition and Cancer, Vol. 54, No. 2, 2006, pp. 171-178. doi:10.1207/s15327914nc5402_3
[7] C. A. Gonzalez, P. Jakszyn, G. Pera, A. Agudo, S. Bing- ham and J. R. Quiros, “Meat Intake and Risk of Stomach and Esophageal Adenocarcinoma within the European Prospective Investigation into Cancer and Nutrition (EPIC),” Journal of the National Cancer Institute, Vol. 98, No. 5, 2006, pp. 345-354. doi:10.1093/jnci/djj071
[8] S. T. Mayne, H. A. Risch, R. Dubrow, W. H. Chow, M. D. Gammon and J. F. Fraumeni Jr., “Nutrient Intake and Risk of Subtypes of Esophageal and Gastric Cancer,” Cancer Epidemiology, Biomarkers & Prevention, Vol. 10, No. 10, 2001, pp. 1055-1062.
[9] S. A. Navarro Silvera, S. T. Mayne, H. Risch, M. D. Gammon, T. L. Vaughan and W. H. Chow, “Food Group Intake and Risk of Subtypes of Esophageal and Gastric Cancer,” International Journal of Cancer, Vol. 123, No. 4, 2008, pp. 852-860. doi:10.1002/ijc.23544
[10] P. A. van den Brandt, A. A. Botterweck and R. A. Goldbohm, “Salt Intake, Cured Meat Consumption, Refrigerator Use and Stomach Cancer Incidence: A Prospective Cohort Study (Netherlands),” Cancer Causes Control, Vol. 14, No. 5, 2003, pp. 427-438. doi:10.1023/A:1024979314124
[11] E. Riboli and T. Norat, “Cancer Prevention and Diet: Opportunities in Europe,” Public Health Nutrition, Vol. 4, No. 2B, 2001, pp. 475-484. doi:10.1079/PHN2001158
[12] C. Liu and R. M. Russell, “Nutrition and Gastric Cancer Risk: An Update,” Nutrition Reviews, Vol. 66, No. 5, 2008, pp. 237-249. doi:10.1111/j.1753-4887.2008.00029.x
[13] M. Oba, K. Miwa, T. Fujimura, S. Harada, S. Sasaki and T. Hattori, “Chemoprevention of Glandular Stomach Carcinogenesis through Duodenogastric Reflux in Rats by a COX-2 Inhibitor,” International Journal of Cancer, Vol. 123, No. 7, 2008, pp. 1491-1498. doi:10.1002/ijc.23742
[14] M. Oba, K. Miwa, T. Fujimura, S. Harada, S. Sasaki, K. Oyama and T. Hattori, “A Selective Cyclooxygenase-2 Inhibitor Prevents Inflammation-related Squamous Cell Carcinogenesis of the Forestomach via Duodenogastric Reflux in Rats,” Cancer, Vol. 115, No. 2, 2009, pp. 454-464. doi:10.1002/cncr.23990
[15] H. Chen, M. H. Ward, B. I. Graubard, E. F. Heineman, R. M. Markin and K. L. Tucker, “Dietary Patterns and Adenocarcinoma of the Esophagus and Distal Stomach,” American Journal of Clinical Nutrition, Vol. 75, No. 1, 2002, pp. 137-144.
[16] F. L. Haven, “The Effect of Cod-Liver Oil on Tumor Growth,” American Journal of Cancer, Vol. 27, 1936, pp. 95-98.
[17] V. Maillard, P. Bougnoux, P. Ferrari, M. L. Jourdan, M. Pinault and V. Chajes, “N-3 and N-6 Fatty Acids in Breast Adipose Tissue and Relative Risk of Breast Cancer in a Case-control Study in Tours, France,” International Journal of Cancer, Vol. 98, No. 1, 2002, pp. 78-83. doi:10.1002/ijc.10130
[18] P. Terry, P. Lichtenstein, M. Feychting, A. Ahlbom and A. Wolk, “Fatty Fish Consumption and Risk of Prostate Cancer,” Lancet, Vol. 357, No. 9270, 2001, pp. 1721-1812. doi:10.1016/S0140-6736(00)04889-3
[19] P. Terry, A. Wolk, H. Vainio and E. Weiderpass, “Fatty Fish Consumption Lowers the Risk of Endometrial Cancer: a Nationwide Case-control Study in Sweden,” Cancer Epidemiology, Biomarkers & Prevention, Vol. 11, No. 1, 2002, pp. 143-145.
[20] J. Cheng, K. Ogawa, K. Kuriki, Y. Yokoyama, T. Kamiya and S. Tokudome, “Increased Intake of n-3 Polyunsaturated Fatty Acids Elevates the Level of Apoptosis in the Normal Sigmoid Colon of Patients Polypectomized for Adenomas/Tumors,” Cancer Letters, Vol. 193, No. 1, 2003, pp. 17-24. doi:10.1016/S0304383502007176
[21] E. D. Courtney, S. Matthews, C. Finlayson, D. Di Pierro, A. Belluzzi and R. J. Leicester, “Eicosapentaenoic Acid (EPA) Reduces Crypt Cell Proliferation and Increases Apoptosis in Normal Colonic Mucosa in Subjects with a History of Colorectal Adenomas,” International Journal of Colorectal Disease, Vol. 22, No. 7, 2007, pp. 765-776. doi:10.1007/s00384-006-0240-4
[22] Y. Y. Fan, Y. Zhan, H. M. Aukema, L. A. Davidson, L. Zhou and R. S. Chapkin, “Proapoptotic Effects of Dietary (n-3) Fatty Acids Are Enhanced in Colonocytes of Manganese-Dependent Superoxide Dismutase Knockout Mice,” Journal of Nutrition, Vol. 139, No. 7, 2009, pp. 1328-1332. doi:10.3945/jn.109.106203
[23] K. Berge, K. J. Tronstad, P. Bohov, L. Madsen and R. K. Berge, “Impact of Mitochondrial Beta-Oxidation in Fatty Acid-mediated Inhibition of Glioma Cell Proliferation,” Journal of Lipid Research, Vol. 44, No. 1, 2003, pp. 118-127. doi:10.1194/jlr.M200312-JLR200
[24] K. Berge, K. J. Tronstad, E. N. Flindt, T. H. Rasmussen, L. Madsen, K. Kristiansen and R. K. Berge, “Tetradecylthioacetic Acid Inhibits Growth of Rat Glioma Cells ex vivo and in vivo via PPAR-dependent and PPAR-independent Pathways,” Carcinogenesis, Vol. 22, No. 11, 2001, pp. 1747-1755. doi:10.1093/carcin/22.11.1747
[25] K. J. Tronstad, O. Bruserud, K. Berge and R. K. Berge, “Antiproliferative Effects of a Non-Beta-Oxidizable Fatty Acid, Tetradecylthioacetic Acid, in Native Human Acute Myelogenous Leukemia Blast Cultures,” Leukemia, Vol. 16, No. 11, 2002, pp. 2292-2301. doi:10.1038/sj.leu.2402698
[26] K. J. Tronstad, B. T. Gjertsen, C. Krakstad, K. Berge, O. T. Brustugun and R. K. Berge, “Mitochondrial-Targeted Fatty Acid Analog Induces Apoptosis with Selective Loss of Mitochondrial Glutathione in Promyelocytic Leukemia Cells,” Chemistry & Biology, Vol. 10, No. 7, 2003, pp. 609-618. doi:10.1016/S1074-5521(03)00142-X
[27] P. O. Iversen, D. R. Sorensen, K. J. Tronstad, O. A. Gud- brandsen, A. C. Rustan and C. A. Drevon, “A Bioactively Modified Fatty Acid Improves Survival and Impairs Metastasis in Preclinical Models of Acute Leukemia,” Clinical Cancer Research, Vol. 12, No. 11, 2006, pp. 3525-3531. doi:10.1158/1078-0432.CCR-05-2802
[28] M. Suo, K. Mukaisho, A. Shimomura, H. Sugiha and T. Hattori, “Thioproline Prevents Carcinogenesis in the Remnant Stomach Induced by Duodenal Reflux,” Cancer Letters, Vol. 237, No. 2, 2006, pp. 256-262. doi:10.1016/j.canlet.2005.06.019
[29] E. G. Bligh and W. J. Dyer, “A Rapid Method of Total Lipid Extraction and Purification,” Canadian Journal of Biochemistry and Physiology, Vol. 37, No. 8, 1959, pp. 911-917. doi:10.1139/o59-099
[30] M. Kates, “General Analytical Procedures. In Techniques in Lipidology,” M. Dates Elsevier Science Publishers, Amsterdam, 1986, pp. 112-185.
[31] S. R. Chavali, W. W. Zhong, T. Utsunomiya and R. A. Forse, “Decreased Production of Interleukin-1-Beta, Prostaglandin-E2 and Thromboxane-B2, and Elevated Levels of Interleukin-6 and -10 Are Associated with Increased Survival during Endotoxic Shock in Mice Consuming Diets Enriched with Sesame Seed Oil Supplemented with Quil-A saponin,” International Archives of Allergy and Immunology, Vol. 114, No. 2, 1997, pp. 153-160. doi:10.1159/000237661
[32] T. Utsunomiya, S. R. Chavali, W. W. Zhong and R. A. Forse, “Effects of Sesamin-Supplemented Dietary Fat Emulsions on the ex Vivo Production of Lipopolysaccharide-Induced Prostanoids and Tumor Necrosis Factor Alpha in Rats,” American Journal of Clinical Nutrition, Vol. 72, No. 3, 2000, pp. 804-808.
[33] K. Mukaisho, K. Miwa, H. Kumagai, M. Bamba, H. Sugihara and T. Hattori, “Gastric Carcinogenesis by Duode- nal Reflux through Gut Regenerative Cell Lineage,” Digestive Diseases and Sciences, Vol. 48, No. 11, 2003, pp. 2153-2158. doi:10.1023/B:DDAS.0000004519.26201.a4
[34] K. Miwa, T. Hattori and I. Miyazaki, “Duodenogastric Reflux and Foregut Carcinogenesis,” Cancer, Vol. 75, No. 6, 1995, pp. 1426-1432. doi:10.1002/1097-0142(19950315)75:6+<1426::AID-CNCR2820751506>3.0.CO;2-#
[35] K. Miwa, H. Hasegawa, T. Fujimura, H. Matsumoto, R. Miyata and T. Hattori, “Duodenal Reflux through the Pylorus Induces Gastric Adenocarcinoma in the Rat,” Carcinogenesis, Vol. 13, No. 12, 1992, pp. 2313-2316. doi:10.1093/carcin/13.12.2313
[36] S. P. Mehta, A. P. Boddy, J. Cook, V. Sams, E. K. Lund and M. Rhodes, “Effect of n-3 Polyunsaturated Fatty Acids on Barrett’s Epithelium in the Human Lower Esophagus,” American Journal of Clinical Nutrition, Vol. 87, No. 4, 2008, pp. 949-956.
[37] W. Fetterman Jr. and M. M. Zdanowicz, “Therapeutic Potential of n-3 Polyunsaturated Fatty Acids in Disease,” American Journal of Health-System Pharmacy, Vol. 66, No. 13, 2009, pp. 1169-1179. doi:10.2146/ajhp080411
[38] S. L. Tilley, T. M. Coffman and B. H. Koller, “Mixed Messages: Modulation of Inflammation and Immune Responses by Prostaglandins and Thromboxanes,” Journal of Clinical Investigation, Vol. 108, No. 1, 2001, pp. 15-23.
[39] M. J. James, R. A. Gibson and L. G. Cleland, “Dietary Polyunsaturated Fatty Acids and Inflammatory Mediator production,” American Journal of Clinical Nutrition, Vol. 71, No. 1, 2000, pp. 343S-348S.
[40] R. I. Sperling, A. I. Benincaso, C. T. Knoell, J. K. Larkin, K. F. Austen and D. R. Robinson, “Dietary Omega-3 Po- lyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils,” Journal of Clinical Investigation, Vol. 91, No. 2, 1993, pp. 651-660. doi:10.1172/JCI116245
[41] H. Heimli, C. Giske, S. Naderi, C. A. Drevon and K. Hollung, “Eicosapentaenoic Acid Promotes Apoptosis in Ramos Cells via Activation of Caspase-3 and -9,” Lipids, Vol. 37, No. 8, 2002, pp. 797-802. doi:10.1007/s11745-002-0963-6
[42] H. Heimli, K. Hollung, and C. A. Drevon, “Eicosapentaenoic Acid-Induced Apoptosis Depends on Acyl CoA-Synthetase,” Lipids, Vol. 38, No. 3, 2003, pp. 263-268. doi:10.1007/s11745-003-1059-z
[43] D. K. Asiedu, L. Froyland, H. Vaagenes, O. Lie, A. Demoz and R. K. Berge, “Long-Term Effect of Tetradecylthioacetic Acid: A Study on Plasma Lipid Profile and Fatty Acid Composition and Oxidation in Different Rat Organs,” Biochimica et Biophysica Acta, Vol. 1300, No. 2, 1996, pp. 86-96.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.