Aqueous-Phase Sorption Behaviors of Cs+, Co2+, Sr2+ and Cd2+ions on some Composite Ion Exchangers

Abstract

A two new hybrid “organic-inorganic” composite ion exchangers (SAM and FAM), was synthesized by the combination of inorganic ion exchanger tin (IV) silicate and tin (IV) antimonate respectively with organic polymer polyacrylamide (PAm). The sorption isotherms for Cs+, Co2+, Sr2+ and Cd2+ ions on composite ion exchanger were investigated in the range (0.0005 - 0.01M) at different reaction temperature (30℃, 45℃ and 60℃ ± 1℃). The sorption data were subjected to different sorption isotherms and the results verified that Langmuir isotherm is the best model to be applied, and the monolayer sorption capacity were calculated and was found to increase as the reaction temperature increases.

Share and Cite:

I. El-Naggar, G. Ibrahim and E. El-Kady, "Aqueous-Phase Sorption Behaviors of Cs+, Co2+, Sr2+ and Cd2+ions on some Composite Ion Exchangers," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 180-186. doi: 10.4236/aces.2012.21021.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. K. Kaygun and S. Akyil, “Study of the Behaviour of Thorium Adsorption on PAN/Zeolite Composite Adsorbent,” Journal of Hazardous Materials, Vol. 147, No. 1-2, 2007, pp. 357-362. doi:10.1016/j.jhazmat.2007.01.020
[2] D. Humeinicu, G. Drochioiu and K. Popa, “Bioaccumulation of Thorium and Uranyl on Saccharomyces Cerevisiae,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 260, No. 2, 2004, pp. 291-293.
[3] F. Gode and E. Pehlivan, “Adsorption of Cr (III) Ions by Turkish Brown Coals,” Fuel Processing Technology, Vol. 86, No. 8, 2005, pp. 875-884. doi:10.1016/j.fuproc.2004.10.006
[4] H. A. Qdais and H. Moussa, “Removal of Heavy Metals from Wastewater by Membrane Processes: A Comparative Study,” Desalination, Vol. 164, No. 2, 2004, pp. 105-110. doi:10.1016/S0011-9164(04)00169-9
[5] A. A. Khan, et al., “Preparation, Physico-Chemical Characterization, Analytical Applications and Electrical Conductivity Measurement Studies of an ‘OrganicInorganic’ Composite Cation-Exchanger: Polyaniline Sn(IV) Phosphate,” Reactive and Functional Polymers, Vol. 66, 2006, pp. 1649-1663. doi:10.1016/j.reactfunctpolym.2006.06.007
[6] W. A. Siddiqui, S. A. Khan, et al., “Synthesis, Characterization and Ion-Exchange Properties of a New and Novel ‘Organic-Inorganic’ Hybrid Cation-Exchanger: Poly (Methyl Methacrylate) Zr(IV) Phosphate,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 295, 2007, pp. 193-199. doi:10.1016/j.colsurfa.2006.08.053
[7] M. M. Abd El-Latif and M. F. El-Kady, Journal of Applied Sciences Research, Vol. 4, 2008, pp. 1-13.
[8] S. A. Nabi, A. H .Shalla and S. A. Ganai, Separation Purification Technology, Vol. 43, 2008, pp. 164-178.
[9] Z. Alam and S. A. Nabi, “Synthesis and Characterization of a Thermally Stable Strongly Acidic Cd (II) Ion Selective Composite Cation-Exchanger: Polyaniline Ce(IV) Molybdate,” Desalination, Vol. 250, No. 2, 2010, pp. 515-522. doi:10.1016/j.desal.2008.09.008
[10] K. G. Varshney, N. Tayal, A. A. Khan and R. Niwas, “Synthesis, Characterization and Analytical Applications of Lead (II) Selective Polyacrylonitrile Thorium (IV) Phosphate: A Novel Fibrous Ion Exchanger,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 181, No. 1-3, 2001, pp. 123-129. doi:10.1016/S0927-7757(00)00750-0
[11] K. G. Varshney and N. Tayal, Langmuir, Vol. 89, 2001, pp. 25.
[12] K. G. Varshney and P. Gupta, Indian Journal of Chemistry, Vol. 2974, 2003, pp. 42.
[13] A. A. Khan, “Applications of Hg(II) Sensitive Polyaniline Sn(IV) Phosphate Composite Cation-Exchange Material in Determination of Hg2+ from Aqueous Solutions and in Making Ion-Selective Membrane Electrode,” Sensors and Actuators B: Chemical, Vol. 120, 2006, pp. 10-18. doi:10.1016/j.snb.2006.01.033
[14] A. A. Khan and M. M. Alam, “Synthesis, Characterization and Analytical Applications of a New and Novel “Organic–Inorganic” Composite Material as a Cation Exchanger and Cd (II) Ion-Selective Membrane Electrode: Polyaniline Sn (IV) Tungstoarsenate,” Reactive and Functional Polymers, Vol. 55, No. 3, 2003, pp. 277-290. doi:10.1016/S1381-5148(03)00018-X
[15] A. A. Khan and M. M. Alam, “New and Novel Organic- Inorganic Type Crystalline ‘Polypyrrolel/Polyantimonic Acid’ Composite System: Preparation, Characterization and Analytical Applications as a Cation-Exchange Material and Hg (II) Ion-Selective Membrane Electrode,” Analytica Chimica Acta, Vol. 504, No. 2, 2004, pp. 253- 264. doi:10.1016/j.aca.2003.10.054
[16] A. A. Khan and M. M. Alam, “Determination and Separation of Pb2+ from Aqueous Solutions Using a Fibrous Type Organic–Inorganic Hybrid Cation-Exchange Material: Polypyrrole Thorium (IV) Phosphate,” Reactive and Functional Polymers, Vol. 63, No. 2, 2005, pp. 119-133. doi:10.1016/j.reactfunctpolym.2005.02.001
[17] A. A. Khan and M. M. Alam, “Preparation, Characterization and Analytical Applications of a New and Novel Electrically Conducting Fibrous Type Polymeric-Inorganic Composite Material: Polypyrrole Th(IV) Phosphate Used as a Cation-Exchanger and Pb(II) Ion-Selective Membrane Electrode,” Materials Research Bulletin, Vol. 40, No. 2, 2005, pp. 289-305. doi:10.1016/j.materresbull.2004.10.014
[18] B. H. Hameed, A. L. Ahmad and K. N. A. Latiff, “Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared from Rattan Sawdust,” Dyes and Pigments, Vol. 75, No. 1, 2007, pp. 143-149. doi:10.1016/j.dyepig.2006.05.039
[19] M. E. Argun, S. Dursun, C. Ozdemir and M. Karats, “Heavy Metal Adsorption by Modified Oak Sawdust: Thermodynamics and Kinetics,” Journal of Hazardous Materials, Vol. 141, No. 1, 2007, pp. 77-85. doi:10.1016/j.jhazmat.2006.06.095
[20] C. S. Sundaram and S. Meenakshi, “Fluoride Sorption Using Organic-Inorganic Hybrid Type Ion Exchangers,” Journal of Colloid and Interface Science, Vol. 333, No. 1, 2009, pp. 58-62. doi:10.1016/j.jcis.2009.01.022
[21] J. S. Allen, J. L. Whitten, M. Murray and O. Duggan, “The Adsorption of Pollutants by Peat, Lignite and Activated Chars,” Journal of Chemical Technology & Biotechnology, Vol. 68, No. 4, 1997, pp. 442-452. doi:10.1002/(SICI)1097-4660(199704)68:4<442::AID-JCTB643>3.0.CO;2-2
[22] R. Apak, E. T¨utem, M. Hiigiil and J. Hizal, “Heavy Metal Cation Retention by Conventional Sorbents. Red Muds and Fly Ashes,” Journal of Water Resources, Vol. 32, 1998, pp. 430-444.
[23] M. Yavuz, F. Gode, E. Pehlivan, S. Ozmert and Y. C. Sharma, “An Economic Removal of Cu2+ and Cr3+ on the New Adsorbents: Pumice and Polyacrylonitrile/Pumice Composite,” Chemical Engineering Journal, Vol. 137, No. 3, 2008, pp. 453-461. doi:10.1016/j.cej.2007.04.030
[24] H. M. F. Freundlich, “Uber Die Adsorption in Lasugen,” Journal of Chemical Physics, Vol. 57, 1906, pp. 385.
[25] W. Songkasiri, D. T. Reed and B. E. Rittmann, “Biosorption of Neptunium (V) by Pseudomonas Fluorescens,” Radiochimics Acta, Vol. 90, 2002, pp. 785-789. doi:10.1524/ract.2002.90.9-11_2002.785
[26] A. K. Kaygun and S. Akyil, “Study of the Behaviour of Thorium Adsorption on PAN/Zeolite Composite Adsorbent,” Journal of Hazardous Materials, Vol. 147, No. 1-2, 2007, pp. 357-362. doi:10.1016/j.jhazmat.2007.01.020
[27] I. Langmuir, “The Adsorption of Gases on Plane Surfaces Of Glass, Mica and Platinum,” Journal of the American Chemical Society, Vol. 40, No. 9, 1918, p. 1361.
[28] T. S. Anirudhan and P. S. Suchithra, “Humic Acid-Immobilized Polymer/Bentonite Composite as an Adsorbent for the Removal of Copper (II) Ions from Aqueous Solutions and Electroplating Industry Wastewater,” Journal of Industrial and Engineering Chemistry, Vol. 16, No. 1, 2010, pp. 130-139. doi:10.1016/j.jiec.2010.01.006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.