Aggregation Study of Ag-TiO2 Composites

Abstract

Most of the toxicity data presented in the literature are obtained in relatively simple media, like distilled water. The literature reported that nanoparticles agglomerate immediately upon being added to cell culture media and if the agglomerates are used directly in antimicrobial studies, the interpretation of the toxicity results tends to be complicated. Six different molar ratios Ag-TiO2 composites were synthesized by a reduction method using two different commercial TiO2 particles as base materials and were used to find the aggregate size in distilled water and Mueller-Hinton Broth, and to obtain the minimum inhibitory concentrations (MIC) against E. coli and E. faecalis. To evaluate the evolution of the Ag-TiO2 particle size (z-average) three dilutions of each of the synthesized composites 100 µg/ml, 250 µg/mL and 500 µg/ml were realized in deionized water and Mueller Hinton broth. It was found that Ag-TiO2 composites increased in size after being diluted in Mueller-Hinton Broth, but once they grew in size, they remained constant for 24 minutes, and after this time, did not affect the MIC for the microorganisms involved.

Share and Cite:

M. Noriega-Treviño, C. Quintero-González, J. Morales-Sánchez, J. Guajardo-Pacheco, M. Compeán-Jasso and F. Ruiz, "Aggregation Study of Ag-TiO2 Composites," Materials Sciences and Applications, Vol. 2 No. 12, 2011, pp. 1719-1723. doi: 10.4236/msa.2011.212229.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. A. Martinez-Castanon, N. Nino-Martinez, J. P. Loyola-Rodriguez, N. Patino-Marin, J. R. Martinez- Mendoza and F. Ruiz, “Synthesis of Silver Particles with Different Sizes and Morphologies,” Materials Letters, Vol. 63, No. 15, 2009, pp. 1266-1268. doi:10.1016/j.matlet.2009.02.061
[2] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. Sharma, T. Nevecna and R. Zboril, “Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity,” Journal of Physical Chemistry B, Vol. 110, No. 33, 2006, pp.16248-16253. doi:10.1021/jp063826h
[3] C. Marambio-Jones and E. M. V. Hoek, “A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment,” Journal of Nanoparticle Research, Vol. 12, No. 5, 2010, pp. 1531-1551. doi:10.1007/s11051-010-9900-y
[4] O. Choi and Z. Hu, “Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria,” Environmental Science & Technology, Vol. 42, No. 12, 2008, pp. 4583-4588. doi:10.1021/es703238h
[5] G. A. Martinez-Castanon, N. Nino-Martinez, F. Martinez- Gutierrez, J. R. Martinez-Mendoza and F. Ruiz, “Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes,” Journal of Nanoparticle Research, Vol. 10, No. 8, 2008, pp. 1343-1348. doi:10.1007/s11051-008-9428-6
[6] A. Smetana, K. Klabunde, G. Marchin and C. Sorensen, “Biocidal Activity of Nanocrystalline Silver Powders and Particles,” Langmuir, Vol. 24, No. 14, 2008, pp. 7457- 7464. doi:10.1021/la800091y
[7] S. Pal, Y. Tak and J. Song, “Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli,” Applied and Environmental Microbiology, Vol. 73, No. 6, 2007, pp. 1712-1720. doi:10.1128/AEM.02218-06
[8] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, “The Bactericidal Effect of Silver Nanoparticles,” Nanotechnology, Vol. 16, No. 10, 2005, pp. 2346-2353. doi:10.1088/0957-4484/16/10/059
[9] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecova and R. Zboril, “Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs),” Journal of Physical Chemistry C, Vol. 112, No. 15, 2008, pp. 5825- 5834. doi:10.1021/jp711616v
[10] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, “Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles,” Nanotechnology, Vol. 18, No. 22, 2007, pp. 225103-225111. doi:10.1088/0957-4484/18/22/225103
[11] K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, S. L. P. Savin and A. V. Chadwick, “Titania and Silver-Titania Composite Films on Glass-Potent Antimicrobial Coatings,” Journal of Materials Chemistry, Vol. 17, No. 35, 2007, pp. 95-104. doi:10.1039/b611740f
[12] N. Nino-Martinez, G. A. Martinez-Castanon, A. Aragon- Pina, F. Martinez-Gutierrez, J. R. Martinez-Mendoza and F. Ruiz, “Characterization of Silver Nanoparticles Synthesized on Titanium Dioxide Fine Particles,” Nanotechnology, Vol. 19, No. 6, 2008, Article ID: 065711. doi:10.1088/0957-4484/19/6/065711
[13] G. Fu, P. S. Vary and C. Lin, “Anatase TiO2 Nanocomposites for Antimicrobial Coatings,” Journal of Physical Chemistry B, Vol. 109, No. 18, 2005, pp. 8889-8898. doi:10.1021/jp0502196
[14] J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D. J. Pochan and S. I. Shah, “Antibacterial Properties of Silver- Doped Titania,” Small, Vol. 3, No. 5, 2007, pp. 799-803. doi:10.1002/smll.200600481
[15] M. Yeo and M. Kang, “Effects of Nanometer Sized Silver Materials on Biological Toxicity during Zebrafish Embryogenesis,” Bulletin of the Korean Chemical Society, Vol. 29, No. 6, 2008, pp. 1179-1184. doi:10.5012/bkcs.2008.29.6.1179
[16] P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. Khandoga, C. A. Reichel, C. Coester T. Tuomi, M. Rehberg and F. Krombach, “Optimized Dispersion of Nanoparticles for Biological in Vitro and in Vivo Studies,” Particle and Fibre Toxicology, Vol. 5, No. 14, 2008, pp. 1-14.
[17] R. MacCuspie, “Colloidal Stability of Silver Nanoparticles in Biologically Relevant Conditions,” Journal of Nanoparticle Research, Vol. 13, No. 7, 2011, pp. 2893-2908. doi:10.1007/s11051-010-0178-x
[18] S. Kitller, G. Greulich, J. S. Gebauer, J. Diendorf, L. Treuel, L. Ruiz, J. M. G. Calbet, M. Vallet-Regi, R. Zellner, M. Koller and M. Epple, “The Infuence of Proteins on the Dispersability and Cell-Biollogical Activity of Silver Nanoparticles,” Journal of Materials Chemistry, Vol. 20, No. 3, 2010, pp. 512-518. doi:10.1039/b914875b
[19] Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E. M. H. Hoek, H. Godwin, A. E. Nel and J. I. Zink, “Dispersion and Stability Optimization of TiO2. Nanoparticles in Cell Culture Media,” Environmental Science & Technology, Vol. 44, No. 19, 2010, pp. 7309-7314. doi:10.1021/es100417s
[20] I. Lynch, A. Salvati and K. A. Dawson, “Protein- Nanoparticle Interactions. What does the Cell See?” Nature Nanotechnology, Vol. 4, No. 9, 2009, pp. 546-547. doi:10.1038/nnano.2009.248

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.