Imaging of arterial plaque by quadrature swept-source optical coherence tomography with signal to noise ratio enhancements
Youxin Mao, Costel Flueraru, Shoude Chang
.
DOI: 10.4236/jbise.2011.412093   PDF    HTML     3,404 Downloads   6,166 Views   Citations

Abstract

Arterial plaque from a myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbit is visualized and characterized using a signal to noise ratio enhanced swept-source optical coherence tomography system with a quadrature interferometer (QSS-OCT). A semiconductor optical amplifier is used in the sample arm to amplify the weak signal scattered from arterial plague. Signal to noise ratio improvement are demonstrated in our QSS-OCT system. This finding results into an increase of the penetration depth possible in OCT images, from 1 mm to 2 mm. Preliminary results show that vulnerable plaque with fibrous cap, macrophage accumulations and calcification in the arterial tissue are measurable with our QSS-OCT system.

Share and Cite:

Mao, Y. , Flueraru, C. and Chang, S. (2011) Imaging of arterial plaque by quadrature swept-source optical coherence tomography with signal to noise ratio enhancements. Journal of Biomedical Science and Engineering, 4, 755-761. doi: 10.4236/jbise.2011.412093.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A. and Fujimoto, J.G. (1991) Optical coherence tomography. Science, 254, 1178-1181. doi:10.1126/science.1957169
[2] Barils, P. and Schmitt, J. (2009) Current and future developments in intracoronary optical coherence tomography imaging. EuroInterv, 4, 529-533. doi:10.4244/EIJV4I4A89
[3] Sarunic, M.V., Choma, M.A., Yang, C. and Izatt, J.A. (2005) Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers. Optics Express, 13, 957-967. doi:10.1364/OPEX.13.000957
[4] Mao, Y., Sherif, S., Flueraru, C. and Chang, S. (2008) 3 × 3 Mach-Zehnder interferometer with unbalanced differential detection for full range swept-source optical coherence tomography. Applied Optics, 47, 2004-2010. doi:10.1364/AO.47.002004
[5] Flueraru, C., Kumazaki, H., Sherif, S., Chang, S. and Mao, Y. (2007) Quadrature Mach-Zehnder interferometer with application in optical coherence tomography. Journal of Optics A: Pure and Applied Optics, 9, L5-L8. doi:10.1088/1464-4258/9/4/L01
[6] Rollins, A.M. and Izatt, J.A. (1999) Optimal interferometer designs for optical coherence tomography. Optics Letters, 24, 1484-1486. doi:10.1364/OL.24.001484
[7] Podoleanu, A.Gh. (2000) Unbalanced versus balanced operation in an optical coherence tomography system. Applied Optics, 39, 173-182. doi:10.1364/AO.39.000173
[8] Jang, I.K., Bouma, B.E., Kang, D.H., Park, S.J., Park, S.W., Seung, K.B., Choi, K.B., Shishkov, M., K. Schlendorf, Pomerantsev, E., Houser, S.L., Aretz, H.T. and Tearney, G.J. (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. Journal of the American College of Cardiology, 39, 604-609. doi:10.1016/S0735-1097(01)01799-5
[9] Stamper, D., Weissman, N. and Brezinski, M. (2006) Plaque characterization with optical coherence tomography. Journal of the American College of Cardiology, 47, 69-79. doi:10.1016/j.jacc.2005.10.067
[10] Luz, A., Bisceglia, T., Hughes, C., Tammam, K., Farah, B. and Fajadet, J. (2010) Atherosclerotic plaque prolapse between coronary stent struts visualized by optical coherence tomography. Revista Portuguesa de Cardiologia, 29, 143-146.
[11] Patel, N.A., Stamper, D.L. and Brezinski, M.E. (2005) Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovascular and Interventional Radiology, 28, 1-9. doi:10.1007/s00270-003-0021-1
[12] Andersen, P.E., Bjarklev, A. and Tycho, A. (2005) Optical amplification in coherent optical frequency modulated continuous wave reflectometry. US Patent No. 6900- 943 B2.
[13] Rao, B., Zhang, J., Wang, Q. and Chen, Z. (2007) Investigation of coherent amplification with a semiconductor optical amplifier employed in a swept source OCT system. Proceedings of SPIE, 6429, 642924-1. doi:10.1117/12.704844
[14] Jayavel, P., Amano, T., Choi, D., Furukawa, H., Hiro-Oka, H., Asaka, K. and Ohbayashi, K. (2006) Improved sensitivity of optical frequency domain reflectometry-optical coherence tomography using a semiconductor optical amplifier. Japanese Journal of Applied Physics, 45, L1317- L1319. doi:10.1143/JJAP.45.L1317
[15] Mao, Y., Chang, S. and Flueraru, C. (2010) Fiber lenses for ultra-small probes used in optical coherent tomography. Journal of Biomedical Science and Engineering, 3, 27-34.
[16] Shiomi, M., Ito, T., Yamada, S., Kawashima, S. and Fan, J. (2003) Development of an animal model for spontaneous myocardial infarction (WHHL-MI rabbit). Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1239-1244. doi:10.1161/01.ATV.0000075947.28567.50
[17] Sainter, A.W. King, T.A. and Dickinson, M.R. (2002) Theoretical comparison of light sources for use in optical coherence tomography. Proceedings of SPIE, 4619, 289-299. doi:10.1117/12.491307
[18] Yun, S.H., Boudoux, C., Tearney, G.J. and Bouma, B.E. (2003) High-speed wavelength-swept semiconductor laser with a polygon-scaner-based wavelength filter. Optics Letters, 28, 1981-1983. doi:10.1364/OL.28.001981
[19] Zhu, X., Liang, Y., Mao, Y., Jia, Y., Liu, Y. and Mu, G. (2008) Analyses and calculations of noise in optical coherence tomography systems. Frontiers of Optoelectronics in China, 1, 247-257. doi:10.1007/s12200-008-0034-0
[20] Rosa C. C. and Podoleanu, A. Gh. (2004) Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver, Applied Optics, 43, 4802-4815. doi:10.1364/AO.43.004802

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.