Share This Article:

Self-Assembled Monolayers (SAMs): Which Perspectives in Implant Dentistry?

Full-Text HTML Download Download as PDF (Size:310KB) PP. 533-543
DOI: 10.4236/jbnb.2011.225064    5,635 Downloads   9,994 Views   Citations

ABSTRACT

Self-assembled monolayers (SAMs) are ordered organic films formed by adsorption of an active organic coating on a solid surface. Their formation provides an alternative, highly innovative, to current traditional chemical treatments of the titanium surfaces. For this reason the structural phases, the formation and the growth of SAMs is described from a surface science point of view. Particulars are given to SAMs on titanium concerning surface morphology, chemical composition and affinity of specific head group for Ti surfaces (silanes, siloxane, phosphonates and phosphates). Preparation, coating methodologies, limitations and techniques used for the characterization of SAMs are reported. For their physicochemical characteristics and micro-nano scale features some perspectives of using SAMs in biomedical application are outlined.

Cite this paper

F. Mastrangelo, G. Fioravanti, R. Quaresima, R. Vinci and E. Gherlone, "Self-Assembled Monolayers (SAMs): Which Perspectives in Implant Dentistry?," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 5A, 2011, pp. 533-543. doi: 10.4236/jbnb.2011.225064.

References

[1] J. A. Shibli, S. Grassi, L. C. de Figueiredo, M. Feres, E. Marcantonio Jr., G. Iezzi and A. Piattelli, “Influence of Implant Surface Topography on early Osseointegration: A Histological Study in Human Jaws,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 80B, No. 2, 2007, pp. 377-385.
[2] S. Tetè, F. Mastrangelo, R. Quaresima, R. Vinci, G. Sammartino, L. Stuppia and E. Gherlone, “Influence of Novel Nano-Titanium Implant Surface on Human Osteoblast Behavior and Growth,” Implant Dentistry, Vol. 19, No. 6, 2010, pp. 520-530. doi:10.1097/ID.0b013e3182002eac
[3] A. Wennemberg, T. Albrektsson, “On Implant Surfaces: A Review of Current Knowledge and Opinions,” The International Journal of Oral and Maxillofacial Implants, Vol. 25, No. 1, 2010, pp. 63-74.
[4] K. Thomas and S. D. Cook, “Relationship between Surface Characteristics and the Degree of Bone-Implant Integration,” Journal of Biomedical Materials Research, Vol. 26, No. 6, 1992, pp. 831-832. doi:10.1002/jbm.820260612
[5] T. Albrektsson, P. I. Branemark, H. A. Hansson and J. Lindstrom, “Osseointegrated Titanium Implants,” Acta Orthopaedica Scandinavica, Vol. 52, 1981, pp. 155-170. doi:10.3109/17453678108991776
[6] N. S. Peckitt, “Stereoscopic Lithography: Customized Titanium Implants in Orofacial Reconstruction,” British Journal of Oral and Maxillofacial Surgery, Vol. 37, No. 5, 1999, pp. 353-369. doi:10.1054/bjom.1999.0070
[7] A. Gaggl, G. Schultes, W. D. Muller and H. Karcher, “Scanning Electron Microscopical Analysis of Laser- Treated Titanium Implant Surfacesa Comparative Study,” Biomaterials, Vol. 21, No. 10, 2000, pp. 1067-1073. doi:10.1016/S0142-9612(00)00002-8
[8] P.-F. Chauvy, P. Hoffmann and D. Landolt, “Applications of Laser Lithography on Oxide Film to Titanium Micromachining,” Applied Surface Science, Vol. 208-209, 2003, pp. 165-170. doi:10.1016/S0169-4332(02)01361-2
[9] P.-F. Chauvy, P. Hoffmann and D. Landolt, “Electrochemical Micromachining of Titanium Using Laser Oxide Film Lithography: Excimer Laser Irradiation of Anodic Oxide,” Applied Surface Science, Vol. 211, No. 1-4, 2003, pp. 113-127. doi:10.1016/S0169-4332(03)00256-3
[10] A. Kurella and N. B. Dahotre, “Review Paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” Journal of Biomaterials Applications, Vol. 20, No. 1, 2005, pp. 5-50. doi:10.1177/0885328205052974
[11] R. Lahoza, J. P. Espinos, G. F. De la Fuente and A. R. Gonzalez-Elipe, ‘‘In Situ XPS Studies of Laser Induced Surface Cleaning and Nitridation of Ti,” Surface Coating Technologies, Vol. 202, No. 8, 2008, pp. 1486-1492. doi:10.1016/j.surfcoat.2007.06.061
[12] A. Heinrich, K. Dengler, T. Koerner, C. Haczek, H. Deppe and B. Stritzker, “Laser-Modified Titanium Implants for Improved Cell Adhesion,” Lasers Medicine Science, Vol. 23, No. 1, 2008, pp. 55-58. doi:10.1007/s10103-007-0460-z
[13] K. Yoon, K. Yang and H. Lee, “Fabrication of Polycrystalline TiO2 Nanopatterns by TiO2 Sol Base Imprint Lithography,” Thin Solid Films, Vol. 518, No. 1, 2009, pp. 126-129. doi:10.1016/j.tsf.2009.07.056
[14] I. N. Zavestovskaya, “Laser Nanostructuring of Materials Surfaces,” Quantum Electron, Vol. 40, No. 11, 2010, pp. 942-954. doi:10.1070/QE2010v040n11ABEH014447
[15] P. Rajesh, C. V. Muraleedharan, M. Komath and H. Varma, “Laser Surface Modification of Titanium Substrate for Pulsed Laser Deposition of Highly Adherent Hydroxyapatite,” Journal of Materials Science: Materials Medicine, Vol. 22, No. 7, 2011, pp. 1671-1679. doi:10.1007/s10856-011-4342-3
[16] R. A. Delgado-Ruíz, J. L. Calvo-Guirado, P. Moreno, J. Guardia, G. Gomez-Moreno, J. E. Mate-Sánchez, P. Ramirez-Fernández and F. Chiva, “Femtosecond Laser Microstructuring of Zirconia Dental Implants,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 96B, No. 1, 2011, pp. 91-100. doi:10.1002/jbm.b.31743
[17] A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes- Perdomo, M. H. Fernandes, D. J. Hansford, A. H. De Aza, P. Pena and F. J. Monteiro “Isotropic Micropatterned Silica Coatings on Zirconia Induce Guided Cell Growth for Dental Implants,” Dental Materials, Vol. 27, No. 6, 2011, pp. 581-589. doi:10.1016/j.dental.2011.02.014
[18] N. A. Riedel, J. D. Williams and K. C. Popat, “Ion Beam Etching Titanium for Enhanced Osteoblast Response,” Journal of Materials Science, Vol. 46, No. 18, 2011, pp. 6087-6095. doi:10.1007/s10853-011-5571-z
[19] H.-H. Park, X. Zhang, S.-W. Lee, D.-J. Jeong, S.-M.o Lee, K.-D. Kim, D.-G. Choi, J.-H. Choi, J. Lee, E.-S. Lee, H. K. Kang, H.-H. Park, R. H. Hill and J.-H. Jeong, “Optical Characterization of Anatase TiO2 Films Patterned by Direct Ultraviolet-Assisted Nanoimprint Lithography,” Microelectronic Engineering, Vol. 88, No. 6, 2011, pp. 923-928. doi:10.1016/j.mee.2010.12.018
[20] A. A. Campbell, G. E. Fryxell, J. C. Linehan and G. L. Graff, “Surface-Induced Mineralization: A New Method for Producing Calcium Phosphate Coatings,” Journal of Biomedical Materials Research, Vol. 32, No. 1, 1996, pp. 111-118. doi:10.1002/(SICI)1097-4636(199609)32:1<111::AID-JBM13>3.0.CO;2-P
[21] C. B. Mao, H. D. Li, F. Z. Cui, Q. G. Feng, H. Wang and C. L. Ma, “Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-Assembled Silane Monolayer as Template,” Journal of Materials Chemistry, Vol. 8, No. 12, 1998, pp. 2795-2801. doi:10.1039/a801384e
[22] Q. Liu, J. Ding, F. K. Mante, S. L. Wunder and G. R. Baran, “The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: A Self-Assembled Monolayer Technique,” Biomaterials, Vol. 23, No. 15, 2002, pp. 3103-3111. doi:10.1016/S0142-9612(02)00050-9
[23] S. P. Huang, K. C. Zhou, Y. Liu and B. Y. Huang, “Controlled Crystallization of Hydroxyapatite under Hexadecylamine Self-Assembled Monolayer,” Transactions of Nonferrous Metals Society of China, Vol. 13, 2003, pp. 595-599.
[24] P. J. Majewski and G. Allidi, “Synthesis of Hydroxyapatite on Titanium Coated with Organic Self-Assembled Monolayers,” Materials Science and Engineering a Structural Materials Properties Microstructure and Processing, Vol. 420, 2006, pp. 13-20.
[25] R. Beutner, J. Michael, B. Schwenzer and D. Scharnweber, “Biological Nano-Functionalization of Titanium- Based Biomaterial Surfaces: A Flexible Toolbox,” Journal of the Royal Society Interface, Vol. 7, Suppl. 1, 2010, pp. S93-S105. doi:10.1098/rsif.2009.0418.focus
[26] G. Mendonca, D. B. S. Mendonca, F. J. L. Aragao and L. F. Cooper, “Advancing Dental Implant Surface Technology—From Micron—to Nanotopography,” Biomaterials, Vol. 29, 28, 2008, pp. 3822-3835.
[27] J. Tan and W. M. Saltzman, “Biomaterials with Hierarchically Defined Micro- and Nanoscale Structure,” Biomaterials, Vol. 25, No. 17, 2004, pp. 3593-3601. doi:10.1016/j.biomaterials.2003.10.034
[28] R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces,” Journal of the American Chemical Society, Vol. 105, No. 13, 1983, pp. 4481-4483. doi:10.1021/ja00351a063
[29] D. L. Allara and R. G. Nuzzo, “Spontaneously Organized Molecular Assemblies .1. Formation, Dynamics and Physical-Properties of Normal-Alkanoic Acids Adsorbed from Solution on an Oxidized Aluminum Surface,” Langmuir, Vol. 1, No. 1, 1985, pp. 45-52. doi:10.1021/la00061a007
[30] D. L. Allara and R. G. Nuzzo, “Spontaneously Organized Molecular Assemblies. 2. Quantitative Infrared Spectroscopic Determination of Equilibrium Structures of Solution-Adsorbed Normal-Alkanoic Acids on an Oxidized Aluminum Surface,” Langmuir, Vol. 1, No. 1, 1985, pp. 52-66. doi:10.1021/la00061a008
[31] R. G. Nuzzo, F. A. Fusco and D. L. Allara, “Spontaneously Organized Molecular Assemblies. 3. Preparation and Properties of Solution Adsorbed Monolayers of Organic Disulfides on Gold Surfaces,” Journal of the American Chemical Society, Vol. 109, No. 8, 1987, pp. 2358-2368. doi:10.1021/ja00242a020
[32] E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara and M. D. Porter, “Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates—Structure, Properties and Reactivity of Constituent Functional-Groups,” Langmuir, Vol. 4, No. 2, 1988, pp. 365-385. doi:10.1021/la00080a021
[33] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1103-1169. doi:10.1021/cr0300789
[34] J. G. Vos, R. J. Forster and T. E. Keyes, “Interfacial Supramolecular Assemblies,” Wiley, John & Sons, Inc., New York, 2003, pp. 88-94. doi:10.1002/0470861517
[35] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chemical Reviews, Vol. 96, No. 4, 1996, pp. 1533-1554. doi:10.1021/cr9502357
[36] G. M. Whitesides, J. K. Kriebel and J. C. Love, “Molecular Engineering of Surfaces Using Self-Assembled Mono- layers,” Science Progress, Vol. 88, No. No. 1, 2005, pp. 17-48. doi:10.3184/003685005783238462
[37] A. Raman, R. Quinones, L. Barriger, R. Eastman, A. Parsi and E. S. Gawalt, “Understanding Organic Film Behavior on Alloy and Metal Oxides,” Langmuir, Vol. 26, No. 3, 2010, pp. 1747-1754. doi:10.1021/la904120s
[38] L. F. Rozsnyai and M. S. Wrighton, “Controlling the Adhesion of Conducting Polymer Films with Patterned Self-Assembled Monolayers,” Chemistry of Materials, Vol. 8, No. 2, 1996, pp. 309-311. doi:10.1021/cm9502838
[39] K. Nozawa, H. Nishihara and K. Aramaki, “Chemical Modification of Alkanethiol Monolayers for Protecting Iron against Corrosion,” Corrosion Science, Vol. 39, No. 9, 1997, pp. 1625-1639. doi:10.1016/S0010-938X(97)00065-6
[40] S. Svedhem, C. A. Hollander, J. Shi, P. Konradsson, B. Liedberg and S. C. T Svensson,” Synthesis of a Series of Oligo(ethylene glycol)-Terminated Alkanethiol Amides Designed to Address Structure and Stability of Biosensing Interfaces,” Journal of Organic Chemistry, Vol. 66, No. 13, 2001, pp. 4494-4503. doi:10.1021/jo0012290
[41] B. C. Kovaric, B. Kokona, A. D. Schwab, M. A. Twomey, J. C. De Paula and R. Fairman, “Self-Assembly of Peptide Porphyrin Complexes: Toward the Development of Smart Biomaterials,” Journal of the American Chemical Society, Vol. 128, No. 13, 2006, pp. 4166-4167. doi:10.1021/ja056357q
[42] D. A. Wang, L. X. Feng, J. Ji, Y. H. Sun, X. X. Zheng and J. H. Elisseeff, “Novel Human Endothelial Cell-Engineered Polyurethane Biomaterials for Cardiovascular Biomedical Applications,” Journal of Biomedical Materials Research Part A, Vol. 65A, No. 4, 2003, pp. 498- 510. doi:10.1002/jbm.a.10533
[43] Y. G. Jiang, Z. Q. Wang, X. Yu, F. Shi, H. P. Xu and X. Zhang, “Self-Assembled Monolayers of Dendron Thiols for Electrodeposition of Gold Nanostructures:? Toward Fabrication of Superhydrophobic/Superhydrophilic Surfaces and pH-Responsive Surfaces,” Langmuir, Vol. 21, No. 5, 2005, pp. 1986-1990. doi:10.1021/la047491b
[44] B. S. Park, S. J. Heo, C. S. Kim, J.-E. Oh, J.-M. Kim, G. Lee, W. H. Park, C.-P. Chung and B.-M. Min, “Effects of Adhesion Molecules on the Behavior of Osteoblast-Like Cells and Normal Human Fibroblasts on different Titanium Surfaces,” Journal of Biomedical Materials Research Part A, Vol. 74, No. 4, 2005, pp. 640-651. doi:10.1002/jbm.a.30326
[45] J. D. Cox, M. S. Curry, S. K. Skirboll, P. L. Gourley and D. Y. Sasaki, “Surface Passivation of a Microfluidic Device to Glial Cell Adhesion: A Comparison of Hydrophobic and Hydrophilic SAM Coatings,” Biomaterials, Vol. 23, No. 3, 2002, pp. 929-935. doi:10.1016/S0142-9612(01)00205-8
[46] F. R. F. Fan, Y. X. Yao, L. T. Cai, L. Cheng, J. M. Tour and A. J. Bard, “Structure-dependent Charge Transport and Storage in Self-Assembled Monolayers of Compounds of Interest in Molecular Electronics: Effects of Tip Material, Headgroup, and Surface Concentration,” Journal of the American Chemical Society, Vol. 126, No. 12, 2004, pp. 4035-4042. doi:10.1021/ja0359815
[47] S. Nitahara, T. Akiyama, S. Inoue and S. Yamada, “A Photoelectronic Switching Device Using a Mixed Self- Assembled Monolayer,” The Journal of Physical Chemistry B, Vol. 109, No. 9, 2005, pp. 3944-3948. doi:10.1021/jp046776u
[48] Y. S. Lee, “Self-Assembly and Nanotechnology: A Force Balance Approach,” John Wiley & Sons, New York, 2008. doi:10.1002/9780470292525
[49] N. Spencer, “Tailoring Surfaces: Modifying Surface Composition and Structure for Applications in Tribology, Biology and Catalysis,” World Scientific Publishing Co. Pte. Ltd., Singapore, 2010.
[50] S. K. Arya, M.a Datta and B. D. Malhotra, “Application of Self-Assembled Monolayers to Cholesterol Biosensor: Preparation, Characterization and Application of Some Monolayers to Cholesterol Biosensor,” LAP Lambert Academic Publishing, ISBN 9783843352826, 2011.
[51] F. Schreiber, “Structure and Growth of Self-Assembling Monolayers,” Progress in Surface Science, Vol. 65, No. 5-8, 2000, pp. 151-256. doi:10.1016/S0079-6816(00)00024-1
[52] D. K. Schwartz, “Mechanisms and Kinetics of Self-Assembled Monolayer Formation,” Annual Review of Physical Chemistry, Vol. 52, 2001, pp. 107-137. doi:10.1146/annurev.physchem.52.1.107
[53] O. Azzaroni, M. E. Vela, H. Martin, A. H. Creus, G. Andreasen and R. C. Salvarezza, “Electrodesorption Kinetics and Molecular Interactions at Negatively Charged Self-Assembled Thiol Monolayers in Electrolyte Solutions,” Langmuir, Vol. 17, No. 21, 2001, pp. 6647-6654. doi:10.1021/la010019v
[54] T. Sawaguchi, Y. Sato and F. Mizutani, “Ordered Structures of Self-Assembled Monolayers of 3-Mercaptopropionic Acid on Au(111): In Situ Scanning Tunneling Microscopy Study,” Physical Chemistry Chemical Physics, Vol. 3, No. 16, 2001, pp. 3399-3404. doi:10.1039/b101897n
[55] A. E. Kaifer, “Supramolecular Electrochemistry,” Wiley VCH, Coral Gables, 2001, pp. 191-206.
[56] C. Vericat, M. E. Vela and R. C. Salvarezza, “Self-Assembled Monolayers of Alkanethiols on Au(111): Surface Structures, Defects and Dynamics,” Physical Chemistry Chemical Physics, Vol. 7, No. 18, 2005, pp. 3258-3268. doi:10.1039/b505903h
[57] E. Delamarche, B. Michel, H. Kang and C. Gerber, “Thermal-Stability of Self-Assembled Monolayers,” Langmuir, Vol. 10, No. 11, 1994, pp. 4103-4108. doi:10.1021/la00023a033
[58] S. Ebbens, D. Hutt and C. Q. Liu, “The Thermal Stability of Alkanethiol Self-Assembled Monolayers on Copper for Fluxless Soldering Applications,” IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 2, 2010, pp. 251-259. doi:10.1109/TCAPT.2010.2041779
[59] G. W. Stone, S. G. Ellis, D. A. Cox, J. Hermiller, C. O'Shaughnessy, J. T. Mann, M. Turco, R. Caputo, P. Bergin, J. Greenberg, J. J. Popma, M. E. Russell and T.I. Investigators, “A Polymer-Based, Paclitaxel-Eluting Stent in Patients with Coronary Artery Disease,” New England Journal of Medicine, Vol. 350, 2004, pp. 221-231. doi:10.1056/NEJMoa032441
[60] M. Morice, P. W. Serruys, J. E. Sousa, J. Fajadet, E. B. Hayashi, M. Perin, A. Colombo, G. Schuler, P. Barragan, G. Guagliumi, F. Molnar, R. Falotico and R. S. Grp, “A Randomized Comparison of a Sirolimus-Eluting Stent with a Standard Stent for Coronary Revascularization,” New England Journal of Medicine, Vol. 346, No. 23, 2002, pp. 1773-1780. doi:10.1056/NEJMoa012843
[61] M. Diefenbeck, T. Muckley and G. O. Hofmann, “Prophylaxis and Treatment of Implant-Related Infections by Local Application of Antibiotics,” Injury—International Journal of the Care of the Injured, Vol. 37, No. 2, 2006, pp. 95-104.
[62] G. Schmidmaier, M. Lucke, B. Wildemann, N. P. Haas and M. Raschke, “Prophylaxis and Treatment of Implant- Related Infections by Antibiotic-Coated Implants: A Review,” Injury—International Journal of the Care of the Injured, Vol. 37, No. 2, 2006, pp. 105-112.
[63] G. Mani, D. M. Johnson, D. Marton, M. D. Feldman, D. Patel, A. A. Ayon and C. M. Agrawal, “Drug Delivery from Gold and Titanium Surfaces Using Self-Assembled Monolayers,” Biomaterials, Vol. 29, No. 34, 2008, pp. 4561-4573. doi:10.1016/j.biomaterials.2008.08.014
[64] B. Kasemo and J. Lausmaa, “Aspect of Surface Physics on Titanum Implants,” Swedish Dental Journal, Vol. 28, 1983, pp. 19-36.
[65] J. Lausmaa, and B. Kasemo, “Surface Spectroscopic Characterization of Titanium Implant Materials,” Applied Surface Science, Vol. 44, No. 2, 1990, pp. 133-146. doi:10.1016/0169-4332(90)90100-E
[66] G. Radegran, J. Lausmaa, L. Matsson, U. Rolander and B. Kasemo, “Preparation of Ultra-Thin Oxide Window on Titanium for Tem Analysis,” Journal of Electron Microscopy Techniques, Vol. 19, No. 1, 1991, pp. 99-106. doi:10.1002/jemt.1060190110
[67] I. Olefjord and S. Hansson, “Surface Analysis of Four Dental Implant Systems,” The International Journal of Oral and Maxillofacial Implants, Vol. 8, No. 1, 1993, pp. 32-40.
[68] J. L. Ong, L. C. Lucas, G. N. Raikar, R. Connatser and J. C. Gregory, “Spectroscopic Characterization of Passivated Titanium in a Physiologic Solution,” Journal of Materials Science—Materials in Medicine, Vol. 6, No. 2, 1995, pp. 113-119. doi:10.1007/BF00120418
[69] B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao and X. D. Zhang, “Characterization of surface Oxide Films on Titanium and Bioactivity,” Journal of Materials Science: Materials in Medicine, Vol. 13, No. 5, 2002, pp. 457-464. doi:10.1023/A:1014737831371
[70] E. Ajami and K. F. Aguey-Zinsou, “Formation of OTS Self-Assembled Monolayers at Chemically Treated Titanium Surfaces,” Journal of Materials Science—Materials in Medicine, Vol. 22, No. 8, 2011, pp. 1813-1824. doi:10.1007/s10856-011-4356-x
[71] R. Hofer, M. Textor and N. D. Spencer, “Alkyl Phosphate Monolayers Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces,” Langmuir, Vol. 17, No. 13, 2001, pp. 4014-4020. doi:10.1021/la001756e
[72] R. De Palma, W. Laureyn, F. Frederix, K. Bonroy, J. J. Pireaux, G. Borghs and G. Maes, “Formation of Dense Self-assembled Monolayers of (n-Decyl)trichlorosilanes on Ta/Ta2O5,” Langmuir, Vol. 23, No. 2, 2007, pp. 443- 451. doi:10.1021/la061951e
[73] W. Gao, L. Dickinson, C. Grozinger, F. G. Morin and L. Reven, “Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides,” Langmuir, Vol. 12, No. 26, 1996, pp. 6429-6435. doi:10.1021/la9607621
[74] S. Pawsey, K. Yach and L. Reven, “Self-Assembly of Carboxyalkylphosphonic Acids on Metal Oxide Powders,” Langmuir, Vol. 18, No. 13, 2002, pp. 5205-5212. doi:10.1021/la015749h
[75] R. Quinones, and E. S. Gawalt, “Study of the Formation of Self-Assembled Monolayers on Nitinol,” Langmuir, Vol. 23, No. 20, 2007, pp. 10123-10130. doi:10.1021/la701110p
[76] M. Yoshinari, T. Hayakawa, K. Matsuzaka, T. Inoue, Y. Oda, M. Shimono, T. Ide and T. Tanaka, “Oxygen Plasma Surface Modification Enhances Immobilization of Simvastatin Acid,” Biomedical Research-Tokyo, Vol. 27, 2006, pp. 29-36. doi:10.2220/biomedres.27.29
[77] E. S. Gawalt, M. J. Avaltroni, N. Koch and J. Schwartz, “Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface of Titanium,” Langmuir, Vol. 17, No. 19, 2001, pp. 5736-5738. doi:10.1021/la010649x
[78] S. Tosatti, R. Michel, M. Textor and N. D. Spencer, “Self-Assembled Monolayers of Dodecyl and Hydroxy-Dodecyl Phosphates on Both Smooth and Rough Titanium and Titanium Oxide Surfaces,” Langmuir, Vol. 18, 2002, pp. 3537-3548. doi:10.1021/la011459p
[79] M. Zwahlen, S. Tosatti, M. Textor and G. Hahner, “Orientation in Methyl- and Hydroxyl-Terminated Self-Assembled Alkanephosphate Monolayers on Titanium Oxide Surfaces Investigated with Soft X-Ray Absorption,” Langmuir, Vol. 18, No. 10, 2002, pp. 3957-3962. doi:10.1021/la015692z
[80] P. H. Mutin, G. Guerrero and A. Vioux, “Hybrid Materials from Organophosphorus Coupling Molecules,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3761-3768. doi:10.1039/b505422b
[81] T. Knieling, W. Lang and W. Benecke, “Gas Phase Hydrophobisation of MEMS Silicon Structures with Self-Assembling Monolayers for Avoiding In-Use Sticking,” Sensors and Actuators B: Chemical, Vol. 126, No. 1, 2007, pp. 13-17. doi:10.1016/j.snb.2006.10.023
[82] Y. L. Wang and M. Lieberman, “Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2,” Langmuir, Vol. 19, No. 4, 2003, pp. 1159-1167. doi:10.1021/la020697x
[83] A. Kanta, R. Sedev and J. Ralston, “The Formation and Stability of Self-Assembled Monolayers of Octadecylphosphonic Acid on Titania,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 291, No. 1-3, 2006, pp. 51-58. doi:10.1016/j.colsurfa.2005.12.057
[84] B. M. Silverman, K. A. Wieghaus and J. Schwartz, “Comparative Properties of Siloxane vs Phosphonate Monolayers on a Key Titanium Alloy,” Langmuir, Vol. 21, 1, 2005, pp. 225-228. doi:10.1021/la048227l
[85] G. Zorn, I. Gotman, E. Y. Gutmanas, R. Adadi, G. Salitra and C. N. Sukenik, “Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self-Assembled Mono- layer,” Chemistry of Materials, Vol. 17, No. 16, 2005, pp. 4218-4226. doi:10.1021/cm050477f
[86] G. Zorn, I. Gotman, E. Y. Gutmanas, R. Adadi and C. N. Sukenik, “Surface Modification of Ti45Nb Alloy by Immobilization of RGD Peptide via Self Assembled Mono- layer,” Journal of Materials Science-Materials in Medicine, Vol. 18, No. 7, 2007, pp. 1309-1315. doi:10.1007/s10856-006-0117-7
[87] N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross and H. Menzel, “Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces,” Langmuir, Vol. 22, No. 19, 2006, pp. 8197-8204. doi:10.1021/la060754c
[88] N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross and H. Menzel, “Synthesis and Characterization of Biocompatible Polymer Interlayers on Titanium Implant Materials,” Biomacromolecules, Vol. 7, No. 9, 2006, pp. 2552-2559. doi:10.1021/bm060473j
[89] S. Clair, F. Variola, M. Kondratenko, P. Jedrzejowski, A. Nanci, F. Rosei and D. F. Perepichka, “Self-Assembled Monolayer of Alkanephosphoric Acid on Nanotextured Ti,” Journal of Chemical Physics, Vol. 128, No. 14, 2008, Article ID 144705, pp. 1-6.
[90] E. L. Hanson, J. Schwartz, B. Nickel, N. Koch and M. F. Danisman, “Bonding Self-Assembled Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon,” Journal of the American Chemical Society, Vol. 125, No. 51, 2003, pp. 16074-16080. doi:10.1021/ja035956z
[91] A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, M. D. McKee, “Chemical Modification of Titanium Surfaces for Covalent Attachment of Biological Molecules,” Journal of Biomedical Materials Research, Vol. 40, No. 2, 1998, pp. 324-335. doi:10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
[92] G. Mani, D. M. Johnson, D. Marton, V. L. Dougherty, M. D. Feldman, D. Patel, A. A. Ayon, and C. M. Agrawal “Stability of Self-Assembled Monolayers on Titanium and Gold,” Langmuir, Vol. 24, No. 13, 2008, pp. 6774- 6784. doi:10.1021/la8003646
[93] A. A. Campbell, G. E. Fryxell, J. C. Linehan and G. L. Graff, “Surface-Induced Mineralization: A New Method for Producing Calcium Phosphate Coatings,” Journal of Biomedical Materials Research, Vol. 32, No. 1, 1996, pp. 111-118. doi:10.1002/(SICI)1097-4636(199609)32:1<111::AID-JBM13>3.0.CO;2-P
[94] S. P. Huang, K. C. Zhou, Y. Liu and B. Y. Huang, “Controlled Crystallization of Hydroxyapatite under Hexadecylamine Self-Assembled Monolayer,” Transactions of Nonferrous Metals Society of China, Vol. 13, No. 3, 2003, pp. 595-599.
[95] Q. Liu, J. Ding, F. K. Mante, S. L. Wunder and G. R. Baran, “The Role of Surface Functional Groups in Calcium Phosphate Nucleation on Titanium Foil: A Self- Assembled Monolayer Technique,” Biomaterials, Vol. 23, No. 15, 2002, pp. 3103-3111. doi:10.1016/S0142-9612(02)00050-9
[96] P. J. Majewski and G. Allidi, “Synthesis of Hydroxyapatite on Titanium Coated with Organic Self-Assembled Monolayers,” Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, Vol. 420, No. 1-2, 2006, pp. 13-20. doi:10.1016/j.msea.2006.01.022
[97] C. B. Mao, H. D. Li, F. Z. Cui, Q. G. Feng, H. Wang and C. L. Ma, “Oriented Growth of Hydroxyapatite on (0001) Textured Titanium with Functionalized Self-Assembled Silane Monolayer as Template,” Journal of Materials Chemistry, Vol. 8, No. 12, 1998, pp. 2795-2801. doi:10.1039/a801384e
[98] Y. Masuda, T. Sugiyama and K. Koumoto, “Micropatterning of Anatase TiO2 Thin Films from an Aqueous Solution by a Site-Selective Immersion Method,” Journal of Materials Chemistry, Vol. 12, No. 9, 2002, pp. 2643-2647. doi:10.1039/b203786f
[99] P. X. Zhu, Y. Masuda and K. Koumoto, “A Novel Approach to Fabricate Hydroxyapatite Coating on Titanium Substrate in an Aqueous Solution,” Journal of the Ceramic Society of Japan, Vol. 109, No. 8, 2001, pp. 676- 680. doi:10.2109/jcersj.109.1272_676

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.