Direct Colorimetric Detection of Hydrogen Peroxide Using 4-Nitrophenyl Boronic Acid or Its Pinacol Ester
Gregory Su, Yibin Wei, Maolin Guo
.
DOI: 10.4236/ajac.2011.28101   PDF    HTML     10,025 Downloads   20,171 Views   Citations

Abstract

A colorimetric method for the direct determination of hydrogen peroxide in aqueous solution is described. H2O2 stoichiometrically converts 4-nitrophenyl boronic acid or 4-nitrophenyl boronic acid pinacol ester into 4-nitrophenol, which can be quantified by measuring the absorption at 400 nm in neutral or basic media. The reactions proceed fast under basic conditions and complete in 2 minutes to at pH 11 and 80?C. The linear range for the colorimetric method extends beyond 1.0 to 40 µM H2O2, and the limit of detection is ~1.0 µM H2O2. This method offers a convenient and practical process for rapid determination of hydrogen peroxide in aqueous media. Compared to many other techniques in H2O2 detection, this process is a direct measurement of H2O2, and is relatively unaffected by the presence of various salts, metal ions and the chelator EDTA.

Share and Cite:

G. Su, Y. Wei and M. Guo, "Direct Colorimetric Detection of Hydrogen Peroxide Using 4-Nitrophenyl Boronic Acid or Its Pinacol Ester," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 879-884. doi: 10.4236/ajac.2011.28101.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Zuo and J. Hoigné, “Evidence for Photochemical Formation of H2O2 and Oxidation of SO2 in Authentic Fog Water,” Science, Vol. 260, No. 5104, 1992, pp. 71- 73. doi:10.1126/science.260.5104.71
[2] A. Tahirovic, A. Copra, E. Omanovic-Miklicanin and K. Kalcher, “A Chemiluminescence Sensor for the Deter- mination of Hydrogen Peroxide,” Talanta, Vol. 72, No. 4, 2007, pp. 1378-1385. doi:10.1016/j.talanta.2007.01.072
[3] G. Georgiou and L. Masip, “An Overoxidation Journey with a Return Ticket,” Science, Vol. 300, No. 5619, 2003, pp. 592-594. doi:10.1126/science.1084976
[4] A. Navas Diaz, F. G. Sanchez, M. C. Torijas and J. Lovillo, “Chemiluminescent Lipase Determination Based on the Enhanced Luminol/H2O2/horsedadish Peroxidase/ Fluorescein Diacetate Energy Transfter System,” Fresenius’ Journal of Analytical Chemistry, Vol. 365, 1999, pp. 537-540. doi:10.1007/s002160051518
[5] H. J. H. Fenton, “Oxidation of Tartaric Acid in Presence of Iron,” Journal of the Chemical Society, Vol. 65, 1894, pp. 899-910. doi:10.1039/ct8946500899
[6] B. Halford, “Explosives Detection: Sensor Capitalizes on Contrasts in Redox Chemistry,” Chemical & Engineering News, Vol. 86, No. 11, 2008, p. 10. doi:10.1021/cen-v086n011.p010
[7] F. Sauer, S. Limbach and G. K. Moortgat, “Measure- ments of Hydrogen Peroxide and Individual Organic Peroxides in the Marine Troposphere,” Atmospheric En- vironment, Vol. 31, No. 8, 1997, pp. 1173-1184. doi:10.1016/S1352-2310(96)00289-0
[8] J. Tang, B. Wang, Z. Wu, X. Han, S. Dong and E. Wang, “Lipid Membrane Immobilized Jorseradish Peroxidase Biosensor for Amperometric Determination of Hydrogen Peroxide,” Biosensors & Bioelectronics, Vol. 18, No. 7, 2003, pp. 867-872. doi:10.1016/S0956-5663(02)00148-3
[9] C. Matsubara, K. Kudo, T. Kawashita and K. Takamura, “Spectrophotometric Determination of Hydrogen Perox- ide with Titanium 2-((5-Bromopyridyl)azo)-5-(N-Pro- pyl-N-Sulfopropylamino)Phenol Reagent and Its Application to the Determination of Serum Glucose Using Glu- cose Oxidase,” Analytical Chemistry, Vol. 57, No. 6, 1985, pp. 1107-1109. doi:10.1021/ac00283a032
[10] S. Wolff, “Ferrous Ion Oxidation in Presence of Ferric Ion Indicator Xylenol Orange for Measurement of Hy- droperoxides,” Methods in Enzymology, Vol. 233, 1994, pp. 182-189. doi:10.1016/S0076-6879(94)33021-2
[11] P. A. Tanner and A. Y. S. Wong, “Spectrophotometric Determination of Hydrogen Peroxide in Rainwater,” Ana- lytica Chimica Acta, Vol. 370, No. 2-3, 1998, pp. 279- 287. doi:10.1016/S0003-2670(98)00273-6
[12] W. Luo, M. E. Abbas, L. Zhu, K. Deng and H. Tang, “Rapid Quantitative Determination of Hydrogen Peroxide by Oxidation Decolorization of Methyl Orange Using a Fenton Reaction System,” Analytica Chimica Acta, Vol. 629, No. 1-2, 2008, pp. 1-5. doi:10.1016/j.aca.2008.09.009
[13] E. W. Miller, O. Tulyanthan, E. Y. Isacoff and C. J. Chang, “Molecular Imaging of Hydrogen Peroxide Pro- duced for Cell Signaling,” Nature Chemical Biology, Vol. 3, 2007, pp. 263-267. doi:10.1038/nchembio871
[14] M. J. Navas, A. M. Jimenez and G. Galan, “Air Analysis: Determination of Hydrogen Peroxide by Chemilumines- cence,” Atmospheric Environment, Vol. 33, No. 14, 1999, pp. 2279-2283. doi:10.1016/S1352-2310(98)00117-4
[15] Y. Wei and M. Guo, “Hydrogen Peroxide Triggered Prochelator Activation, Subsequent Metal Chelation, and Attenuation of the Fenton Reaction,” Angewandte Chemie International Edition, Vol. 46, No. 25, 2007, pp. 4722-4725. doi:10.1002/anie.200604859
[16] Y. Wei and M. Guo, “A Novel H2O2-Triggered Anti- Fenton Fluorescent Prochelator Excitable with Visible Light,” Chemical Communications, No. 11, 2009, pp. 1413-1415.
[17] Y. Wei, Y. Zhang, Z. Liu and M. Guo, “A Novel Pro- fluorescent Probe for Detecting Oxidative Stress Induced by Metal and H2O2 in Living Cells,” Chemical Communications, 2010, Vol. 46, pp. 4472-4474. doi:10.1039/c000254b
[18] D. G. Hall, “Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine,” 1st Edition, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
[19] P. Atkins and J. dePaula, “Physical Chemistry,” 8th Edi- tion, W. H. Freeman, Gordonsville, 2006.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.