Evaluation of Response Surface Methodology in Dispersive Liquid-Liquid Microextraction for Lead Determination Using Ionic Liquids
Behrooz Majidi, Farzaneh Shemirani, Rouhollah Khani
.
DOI: 10.4236/ajac.2011.28103   PDF    HTML     4,813 Downloads   8,748 Views   Citations

Abstract

This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-duction system capable of quantifying trace amounts of lead. In the proposed approach, ammonium pyr-rolidine dithiocarbamate (APDC) was used as a chelating agent and 1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl)imid as an extraction solvent was dissolved in acetone as the disperser solvent. The binary solution was then rapidly injected by a syringe into the water sample containing Pb2+ complex. Some factors influencing the extraction efficiency of Pb2+ and its subsequent determination, including extraction and dispersive solvent type, pH of sample solution, concentration of the chelating agent and salt effect were inspected by a full factorial design to identify important parameters and their interactions. Next, a central composite design was applied to obtain the optimum points of the important parameters. Under the optimum conditions, the limit of detection (LOD) was 0.2 µg/L. The relative standard deviation (R.S.D) was 1.4% for 5 µg/L of Pb2+ (n = 7). The relative recovery of lead in seawater, blood, tomato and black tea samples was measured.

Share and Cite:

B. Majidi, F. Shemirani and R. Khani, "Evaluation of Response Surface Methodology in Dispersive Liquid-Liquid Microextraction for Lead Determination Using Ionic Liquids," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 892-901. doi: 10.4236/ajac.2011.28103.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological Profile for Lead, Public Health Service,” U.S. Department of Health and Human Services, Atlanta, 2004.
[2] H. G. A. Seiler and H. Sigel, “Handbook on Toxicity of Inorganic Compounds,” Marcel Dekker, New York, 1998.
[3] M. D. A. Kom, J. B. Andrade, D. S. de Jesus, V. A. Lemos, M. L. S. F. Bandeira, W. N. L. dos Santos, M. A. Bezerra, F. A. Amorim, C. A. S. Souza and S. L. C. Ferreira, “Separation and Preconcentration Procedures for the Determination of Lead Using Spectrometric Techniques: A Review,” Talanta, Vol. 69, No. 1, 2006, pp. 16-24. doi:10.1016/j.talanta.2005.10.043
[4] M. F. Silva, E. S. Cerutti and L. D. Martinez, “Coupling Cloud Point Extraction to Instrumental Detection Systems for Metal Analysis,” Microchimica Acta, Vol. 155, No. 3-4, 2006, pp. 349-364. doi:10.1007/s00604-006-0511-3
[5] Y. Okamoto, Y. Nomura, H. Nakamura, K. Iwamaru, T. Fujiwara and T. Kamamaru, “High Preconcentration of Ultra-Trace Metal Ions by Liquid-Liquid Extraction Using Water/Oil/Water Emulsions as Liquid Surfactant Membranes,” Microchemical Journal, Vol. 65, No. 3, 2000, pp. 341-346. doi:10.1016/S0026-265X(00)00161-2
[6] M. Soylak, S. Saracoglu, U. Divrikli and L. Elci, “Coprecipitation of Heavy Metals with Erbium Hydroxide for Their Flame Atomic Absorption Spectrometric Determinations in Environmental Samples,” Talanta, Vol. 66, No. 5, 2005, pp. 1098-1102. doi:10.1016/j.talanta.2005.01.030
[7] A. N. Anthemidis and K. I. Ioannou, “Evaluation of Polychlorotrifluoroethylene as Sorbent Material for On-Line Solid Phase Extraction Systems: Determination of Copper and Lead by Flame Atomic Absorption Spectrometry in Water Samples,” Analytica Chimica Acta, Vol. 575, No. 1, 2006, pp. 126-132. doi:10.1016/j.aca.2006.05.072
[8] M. T. Naseri, P. Hemmatkhah, M. R. M. Hosseini and Y. Assadi, “Combination of Dispersive Liquid-Liquid Microextraction with Flame Atomic Absorption Spectrometry Using Microsample Introduction for Determination of Lead in Water Samples,” Analytica Chimica Acta, Vol. 610, No. 1, 2008, pp. 135-141. doi:10.1016/j.aca.2008.01.020
[9] E. L. Silva and P. S. Roldan, “Simultaneous Flow Injection Preconcentration of Lead and Cadmium Using Cloud Point Extraction and Determination by Atomic Absorption Spectrometry,” Journal of Hazardous Materials, Vol. 161, No. 1, 2009, pp. 142-147. doi:10.1016/j.jhazmat.2008.03.100
[10] J. Koksal, V. Synek and P. Janos, “Extraction-Spectro- metric Determination of Lead in High-Purity Aluminium Salts,” Talanta, Vol. 58, No. 2, 2002, pp. 325-330. doi:10.1016/S0039-9140(02)00247-3
[11] M. T. Naseri, H. M. R. Milani, Y. Assadi and A. Kiani, “Rapid Determination of Lead in Water Samples by Dispersive Liquid-Liquid Microextraction Coupled with Electrothermal Atomic Absorption Spectrometry,” Talanta, Vol. 75, No. 1, 2008, pp. 56-62. doi:10.1016/j.talanta.2007.10.029
[12] .F. Maltez, D. L. G. Borges, E. Carasek, B. Welz and A. J. Curtius, “Single Drop Micro-Extraction with O,O-Diethyl dithiophosphate for the Deter Mination of Lead by Electrothermal Atomic Absorption Spectrometry,” Talanta, Vol. 74, No. 4, 2008, pp. 800-805. doi:10.1016/j.talanta.2007.07.010
[13] I. Narin and M. Soylak, “Enrichment and Determinations of Nickel(II), Cadmium(II), Copper(II), Cobalt(II) and Lead (II) Ions in Natural Waters, Table Salts, Tea and Urine Samples as Pyrrolydine Dithiocarbamate Chelates by MemBrane Filtration-Flame Atomic Absorption Spectrometry Combination,” Analytica Chimica Acta, Vol. 493, No. 2, 2003, pp. 205-212. doi:10.1016/S0003-2670(03)00867-5
[14] M. Rezaee, Y. Assadi, M. R. M. Hosseini, E. Aghaee, F. Ahmadi and S. Berijani, “Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction,” Journal of Chromatography A, Vol. 1116, No. 1-2, 2006, pp. 1-9. doi:10.1016/j.chroma.2006.03.007
[15] J. F. Liu, J. A. J?nsson and G. Jiang, “Application of Ionic Liquids in Analytical Chemistry,” Trends in Analytical Chemistry, Vol. 24, No. 1, 2005, pp. 20-27. doi:10.1016/j.trac.2004.09.005
[16] G. T. Wei, Z. Yang and C. J. Chen, “Room Temperature Ionic Liquid as a Novel Medium for Liquid/Liquid Extraction of Metal Ions,” Analytica Chimica Acta, Vol. 488, No. 2, 2003, pp. 183-192. doi:10.1016/S0003-2670(03)00660-3
[17] M. Gharehbaghi, F. Shemirani and M. Baghdadi, “Dispersive Liquid-Liquid Microextraction Based on Ionic Liquid and Spectrophotometric Determination of Mercury in Water Samples,” International Journal of Environmental Analytical Chemistry, Vol. 89, No. 1, 2009, pp. 21-33. doi:10.1080/03067310802272994
[18] M. Baghdadi and F. Shemirani, “In Situ Solvent Formation Microextraction Based on Ionic Liquids: A Novel Sample Preparation Technique for Determination of inorganic Species in Saline Solutions,” Analytica Chimica Acta, Vol. 634, No. 2, 2009, pp. 186-191. doi:10.1016/j.aca.2008.12.017
[19] M. Vaezzadeh, F. Shemirani and B. Majidi, “Microextraction Technique Based on Ionic Liquid for Preconcentration and Determination of Palladium in Food Additive, Sea Water, Tea and Biological Samples,” Food and Chemical Toxicology, Vol. 48, No. 6, 2010, pp. 1455- 1460. doi:10.1016/j.fct.2010.03.005
[20] J. L. Anderson, D. W. Armstrong and G.-T. Wei, “Ionic Liquids in Analytical Chemistry,” Analytical Chemistry, Vol. 78, No. 9, 2006, pp. 2892-2902. doi:10.1021/ac069394o
[21] R. P. Swatloski, J. D. Holbrey and R. D. Rogers, “Ionic Liquids Are Not Always Green: Hydrolysis of 1-Butyl-3- methylimidazolium Hexafluorophosphate,” Green Chemistry, Vol. 5, No. 4, 2003, pp. 361-363. doi:10.1039/b304400a
[22] R. Buxton, “The Quality Engineering Handbook, and The Handbook of Quality Management,” 2007. http://www.statease.com/soft_ftp.html
[23] D. C. Montgomery, “Design and Analysis of Experiments,” 5th Edition, John Wiley & Sons Ltd., New York, 2001.
[24] V. Gunaraj and N. Murugan, “Application of Response Surface Methodologies for Predicting Weld Base Quality n Submerged Arc Welding of Pipes,” Journal of Materials Processing Technology, Vol. 88, No. 1-3, 1999, pp. 266-275. doi:10.1016/S0924-0136(98)00405-1
[25] G. Doner and A. Ege, “Determination of Copper, Cadmium and Lead in Seawater and Mineral Water by Flame Atomic Absorption Spectrometry after Coprecipitation with Aluminum Hydroxide,” Analytica Chimica Acta, Vol. 547, No. 1, 2005, pp. 14-17. doi:10.1016/j.aca.2005.02.073
[26] E. Matoso, L. T. Kubota and S. Cadore, “Use of Silica Gel Chemically Modified with Zirconium Phosphate for Pre- concentration and Determination of Lead and Copper by Flame Atomic Absorption Spectrometry,” Talanta, Vol. 60, No. 6, 2003, pp. 1105-1111. doi:10.1016/S0039-9140(03)00215-7
[27] G. A. Zachariadis, A. N. Anthemidis, P. G. Bettas and J. A. Stratis, “Determination of Lead by On-Line Solid Phase Extraction Using a PTFE Micro-Column and Flame Atomic Absorption Spectrometry,” Talanta, Vol. 57, No. 5, 2002, pp. 919-927. doi:10.1016/S0039-9140(02)00132-7
[28] J. Chen and K. C. Teo, “Determination of Cadmium, Copper, Lead and Zinc in Water Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction,” Analytica Chimica Acta, Vol. 450, No. 1-2, 2001, pp. 215-222. doi:10.1016/S0003-2670(01)01367-8
[29] H. F. Maltez, D. L. G. Borges, E. Carasek, B. Welz and A. J. Curtius, “Single Drop Micro-Extraction with O,O Diethyl Dithiophosphate for the Determination of Lead by Electrothermal Atomic Absorption Spectrometry,” Talanta, Vol. 74, No. 4, 2008, pp. 800-805. doi:10.1016/j.talanta.2007.07.010
[30] J. L. Manzoori and M. A. J. Abulhassani, “Ultra-Trace Determination of Lead in Water and Food Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 644, No. 1-2, 2009, pp. 48- 52. doi:10.1016/j.aca.2009.04.029
[31] P. Liang and H. Sang, “Determination of Trace Lead in Biological and Water Samples with Dispersive Liquid- Liquid Microextraction Preconcentration,” Analytical Biochemistry, Vol. 380, No. 1, 2008, pp. 21-25. doi:10.1016/j.ab.2008.05.008
[32] Z. Li, J. Tang and J. Pan, “The Determination of Lead in Preserved Food by Spectrophotometry with Dibromohydroxyphenylporphyrin,” Food Control, Vol. 15, 2004, pp. 565-570. doi:10.1016/j.foodcont.2003.09.002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.