Biosorption of Trivalent Chromium from Aqueous Solution by Red Seaweed Polysiphonia nigrescens

Abstract

This paper presents the biosorption of chromium onto red seaweed (Polysiphonia nigrescens). Batch mode experiments were performed to determine experimental parameters affecting sorption process such as pH, contact time, initial metal ion concentration and biomass dosage. The Cr(III) sorption was dependent on pH and adsorbent dosage. The adsorption kinetic data could be fitted with a pseudo-second-order model and the equilibrium data with a Langmuir model. The maximum sorption capacity was of 16.11 mg/g at pH 4 and 10 g/L of biomass dosage. 0.1 M H2SO4 showed good desorption efficiency (>80%). Spectroscopy analysis showed that Cr(III) sorption on seaweed was mainly through the ion-exchange mechanism. This report indicates that P. nigrescens is an effective and economical sorbent for removal of Cr(III) from wastewaters.

Share and Cite:

P. Blanes, C. Cong, A. Cortadi, M. Frascaroli, M. Gattuso, S. García, J. González, M. Harada, C. Matulewicz, Y. Niwa, H. Prado and L. Sala, "Biosorption of Trivalent Chromium from Aqueous Solution by Red Seaweed Polysiphonia nigrescens," Journal of Water Resource and Protection, Vol. 3 No. 11, 2011, pp. 832-843. doi: 10.4236/jwarp.2011.311093.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Garcia-Reyes, J. Rangel-Mendez and M. Alfaro-De la Torre, “Chromium (III) Uptake by Agro-Waste Biosor-Bents: Chemical Characterization, Sorption-Desorp- tion Studies, and Mechanism,” Journal of Hazardous Materials, Vol. 170, No. 2-3, 2009, pp. 845-854. doi:10.1016/j.jhazmat.2009.05.046
[2] D. Onyancha, W. Mavura, J. Ngila, P. Ongomab and J. Chacha, “Studies of Chromium Removal from Tannery Waste-Waters by Algae Biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum,” Journal of Hazardous Materials, Vol. 158, No. 2-3, 2008, pp. 605- 614. doi:10.1016/j.jhazmat.2008.02.043
[3] D. Park, Y. Yun, J. Jo and J. Park, “Biosorption Process for Treatment of Electroplating Wastewater Containing Cr(VI): Laboratory-Scale Feasibility Test,” Industrial & Engineering Chemistry Research, Vol. 45, No. 14, 2006, pp. 5059-5065. doi:10.1021/ie060002d
[4] S. Bellú, L. Sala, J. González, S. García, M. Frascaroli, P. Blanes, J. García, J. Salas Peregrin, A. Atria, J. Ferrón, M. Harada, C. Cong and Y. Niwa, “Thermodynamic and Dynamic of Chromium Biosorption by Pectic and Lignocellulocic Biowastes,” Journal of Water Resource and Protection, Vol. 2, No. 10, 2010, pp. 888-897. doi:10.4236/jwarp.2010.210106
[5] S. Baral, N. Das, G. Chaudhury and S. Das, “A Preliminary Study on the Adsorptive Removal of Cr(VI) Using Seaweed, Hydrilla verticillata,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 358-369. doi:10.1016/j.jhazmat.2009.06.011
[6] V. Murphy, H. Hughes and P. McLoughlin, “Comparative Study of Chromium Biosorption by Red, Green and Brown Seaweed Biomass,” Chemosphere, Vol. 70, No. 6, 2008, pp. 1128-1134. doi:10.1016/j.chemosphere.2007.08.015
[7] B. Volesky, “Sorption and Biosorption,” BV Sorbex, Inc., Montreal, 2003.
[8] T. A. Davis, B. Volesky and A. Mucci, “A Review of Biochemistry of Heavy Metal Biosorption by Brown Algae,” Water Research, Vol. 37, No. 18, 2003, pp. 4311- 4330. doi:10.1016/S0043-1354(03)00293-8
[9] P. Sheng, Y. Ting, J. Chen and L. Hong, “Sorption of Lead, Copper, Cadmium, Zinc, and Nickel by Marine Algal Biomass: Characterization of Biosorptive Capacity and Investigation of Mechanisms,” Journal of Colloid and Interface Science, Vol. 275, No. 1, 2004, pp. 131-141. doi:10.1016/j.jcis.2004.01.036
[10] A. Sari and M. Tuzen, “Biosorption of Total Chromium from Aqueous Solution by Red Algae (Ceramium virgatum): Equilibrium, Kinetic and Thermodynamic Studies,” Journal of Hazardous Materials, Vol. 160, No. 2-3, 2008, pp. 349-355. doi:10.1016/j.jhazmat.2008.03.005
[11] H. Prado, M. Ciancia and M. Matulewicz, “Agarans from the Red Seaweed Polysiphonia nigrescens (Rhodomelaceae, Ceramiales),” Carbohydrate Research, Vol. 343, No. 4, 2008, pp. 711-718. doi:10.1016/j.carres.2007.12.024
[12] L. Yang and J. Chen, “Biosorption of Hexavalent Chromium onto Raw and Chemically Modified Sargassum sp,” Bioresource Technology, Vol. 99, No. 2, 2008, pp. 297-307. doi:10.1016/j.biortech.2006.12.021
[13] D. Lazar, B. Ribár, V. Divjakovic and C. Mészáros, “Structure of Hexaaquachromium (III) Nitrate Trihydrate,” Acta Crystallographica Section C, Vol. 47, 1991, pp. 1060-1062. doi:10.1107/S0108270190012628
[14] D. Park and J. Park, “XAS and XPS Studies on Chromium-Binding Groups of Biomaterial during Cr(VI) Biosorption,” Journal of Colloid and Interface Science, Vol. 317, No. 1, 2008, pp. 54-61. doi:10.1016/j.jcis.2007.09.049
[15] Y. Yun, D. Park, J. Park and B. Volesky, “Biosorption of Trivalent Chromium on the Brown Seaweed Biomass,” Environ Science Technollogy, Vol. 35, No. 21, 2001, pp. 4353-4358. doi:10.1021/es010866k
[16] U. Garg, M. Kaur, V. Garg and D. Sud, “Removal of Hexavalent Chromium from Aqueous Solution by Agricultural Waste Biomass,” Journal of Hazardous Materials, Vol. 140, No. 1-2, 2007, pp. 60-68. doi:10.1016/j.jhazmat.2006.06.056
[17] S. Bellú, S. García, J. González, A. Atria, L. Sala and S. Signorella, “Removal of Chromium(VI) and Chromium (III) from Aqueous Solution by Grain-Less Stalk of Corn,” Separation Science and Technology, Vol. 43, No. 11-12, 2008, pp. 1- 21.
[18] M. Hubbe, S. Hasan and J. Ducoste, “Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 1. Metals,” BioResources, Vol. 6, No. 2, 2011, pp. 2161-2287.
[19] I. Langmuir, “The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum,” Journal of the American Che- mical Society, Vol. 40, No. 9, 1918, pp. 1361-1403. doi:10.1021/ja02242a004
[20] J. Febrianto, A. Kosasih, J. Sunarso, Y. Ju, N. Indraswati and S. Ismadji, “Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies,” Journal of Hazardous Materials, Vol. 162, No. 2-3, 2009, pp. 616-645. doi:10.1016/j.jhazmat.2008.06.042
[21] M. Dubinin, “The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-Uniform Surface,” Chemical Reviews, Vol. 60, No. 2, 1960, pp. 235-266. doi:10.1021/cr60204a006
[22] R. Sips, “On the Structure of a Catalyst Surface,” Journal of Chemical Physics, Vol. 16, No. 490, 1948, pp. 490- 495. doi:10.1063/1.1746922
[23] S. Basha, Z. Murthy and B. Jha, “Sorption of Hg(II) from Aqueous Solutions onto Carica papaya: Application of Isotherms,” Industrial & Engineering Chemistry Research, Vol. 47, No. 3, 2008, pp. 980-986. doi:10.1021/ie071210o
[24] P. Miretzky, C. Mu?oz and A. Carrillo-Chavez, “Cd(II) Removal from Aqueous Solution by Eleocharis acicularis Biomass, Equilibrium and Kinetic Studies,” Bioresource Technology, Vol. 101, No. 8, 2010, pp. 2637-2642. doi:10.1016/j.biortech.2009.10.067
[25] B. Kiran and A. Kaushik, “Chromium Binding Capacity of Lyngbya putealis Exopolysaccharides,” Biochemical Engineering Journal, Vol. 38, No. 1, 2008, pp. 47-54. doi:10.1016/j.bej.2007.06.007
[26] Y. Ho, J. Porter and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water Air & Soil Pollution, Vol. 141, No. 1-4, 2002, pp. 1-33. doi:10.1023/A:1021304828010
[27] N. Bishnoi, R. Kumar, S. Kumar and S. Rani, “Bio- Sorption of Cr(III) from Aqueous Solution Using Algal Biomass Spirogyra spp,” Journal of Hazardous Materials, Vol. 145, No. 1-2, 2007, pp. 142-147. doi:10.1016/j.jhazmat.2006.10.093
[28] S. Lagergren, “About the Theory of So-Called Adsorption of Soluble Substances, Zur Theorie der Soge-Nannten Adsorption Gel?ster Stoffe,” Kungliga Svenska Ve- tenskapsakademiens, Handlingar, Band, Vol. 24, 1898, pp. 1-39.
[29] Y. Ho, D. Wase and C. Forster, “Kinetic Studies of Com- petitive Heavy Metal Adsorption by Sphagnum Moss Peat,” Environmental Technology, Vol. 17, No. 1, 1996, pp. 71-77. doi:10.1080/09593331708616362
[30] W. Weber Jr. and J. Morris, “Kinetics of Adsorption on Carbon from Solution,” Journal of the Sanitary Engineering Division ASCE, Vol. 89, No. 2, 1963, pp. 31-59.
[31] Y. Ho and G. McKay, “Application of Kinetic Models to the Sorption of Copper(II) on to Peat,” Adsorption Science & Technology, Vol. 20, No. 8, 2002, pp. 795-817. doi:10.1260/026361702321104282
[32] D. Gialamouidis, M. Mitrakas and M. Liakopoulou- Kyriakides, “Equilibrium, Thermodynamic and Kinetic Studies on Biosorption of Mn(II) from Aqueous Solution by Pseudomonas sp., Staphylococcus xylosus and Bla- keslea trispora Cells,” Journal of Hazardous Materials, Vol. 182, No. 1-3, 2010, pp. 672-680. doi:10.1016/j.jhazmat.2010.06.084

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.