An Optimal Management System of a Wind Energy Supplier

Abstract

In this paper, we propose a real time approach to optimize the supplied energy of a wind station. This station is used for electric energy storage in battery bank, water pumping, lighting and heating systems. The characterization of the wind generator allows us to estimate the available electrical wind energy of the platform. A data sheet of the required energy for each load (battery charging, wind pumping system, lighting system and heating system) is drawn up. Basing on the issued data sheet we develop and implement a management system for optimal energy distribution. To improve the proposed management system, we introduce a real time data acquisition (DAQ-S) and data processing (DP-S) subsystems. The DAQ-S measures all the required electrical parameters needed by the proposed DP-S to perform an optimal algorithm activating our smart decision system to allow a rational and effective use of the electrical wind power.

Share and Cite:

A. Raihani, A. Hamdoun, O. Bouattane, B. Cherradi and A. Mesbahi, "An Optimal Management System of a Wind Energy Supplier," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 349-358. doi: 10.4236/sgre.2011.24040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. Miranda, “Analysis of a Wind Electric Pumping System Using Isolated Induction Generator,” M. Sc. Thesis, PPGEE-UFMG, Belo Horizonte, 1997 (in Portugues).
[2] B. D. Vick and R. N. Clark, “Ten Years of Testing a 10 KW Wind Electric System for Small Scale Irrigation,” ASAE Annual International Meeting, Orlando, 1998, p. 984083.
[3] O. Badran, “Wind Turbine Utilization for Water Pumping in Jordan,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, No. 10, 2003, pp. 1203-1214. doi:10.1016/S0167-6105(03)00073-4
[4] M. S. Miranda, O. C. lya Rinato and R. S. Selênio, “An Alternative Isolated Wind Electric Pumping Sysytem Using Induction Machine,” IEEE Transaction on Energy Convers, Vol. 14, No. 4, December 1999, pp. 1611-1616.
[5] B. D. Vick and R. N. Clark, “Testing of 2-Kilowatt Wind Electric System for Water Pumping,” Proceeding of Wind Power 2000 Annual Conference, Palm Springs, 2000, pp. 9-19.
[6] M. Velasco, O. Probst and S. Acevedo, “Theory of Wind Electric Water Pumping,” Science Direct, Renewable Energy, Vol. 29, No. 6, 2004, pp. 873-893. doi:10.1016/j.renene.2003.10.001
[7] D. D. Lara, G. G. Merino, B. J. Pavez and J. A. Tapia, “Efficiency Assessment of Wind Pumping System,” Energy Conversion and Management, Vol. 52, No. 2, 2011, pp. 795-803. doi:10.1016/j.enconman.2010.08.004
[8] H. M. de O. Filho, R. P. T. Bascopé, L. H. S. C. Barreto, F. L. M. Antunes and D. S. Oliveira Jr. “Control Design of Converters for Wind Energy Conversion Systems Applied to Battery Charging,” VIII Conferência Internacional de Aplica??es Industrials, Po?os de Caldas. Induscon, 2008.
[9] I. R. Machado, D. de S. O. Jr., L. H. S. C. Barreto and H. M. de O. Filho, “Small Size Wind Generation System for Battery Charging,” International Conference on Renewable and Power Quality, Sevilla, 28-30 Mach 2007.
[10] A. Hamdoun, O. Bouattane, A. Raihani and A. Mesbahi, “Caractérisation et Evaluation Energétique D’Une Plate-Forme Eolienne,”6 ème Rencontre Nationale des Jeunes Chercheur en Physique 24 et 25-12-09, Casablanca, Décembre 2009.
[11] M. Sathyajith, “Wind Energy: Fundamentals, Resources Analysis and Economics,” Springer Berlin Heidelberg New York, 27 February 2006, pp. 132-151.
[12] V. Gevorgian, D. A. Corbus, S. Drouilhet and R. Holz, “Modeling, Testing, and Economic Analysis of A Wind-Electric Battery Charging Station,” Windpower’98 Blakersfield California, 27 April - 1 May 1998.
[13] http://www.ephemeride.com/calendrier/solaire/19/?

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.