Share This Article:

Functions of Bounded (p(⋅), 2)-Variation in De la Vallée Poussin-Wiener’s Sense with Variable Exponent

Full-Text HTML XML Download Download as PDF (Size:527KB) PP. 507-532
DOI: 10.4236/apm.2017.79033    325 Downloads   512 Views  

ABSTRACT

In this paper we establish the notion of the space of bounded  (p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that any uniformly bounded composition operator that maps this space into itself necessarily satisfies the so-called Matkowski’s conditions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Mejía, O. , Silvestre, P. and Valera-López, M. (2017) Functions of Bounded (p(⋅), 2)-Variation in De la Vallée Poussin-Wiener’s Sense with Variable Exponent. Advances in Pure Mathematics, 7, 507-532. doi: 10.4236/apm.2017.79033.

References

[1] Jordan, C. (1881) Sur la série de Fourier. [On the Fourier Serie]. Comptes Rendus de l’Académie des Sciences, 92, 228-230.
[2] De la Vallée Poussin, C.J. (1908) Sur la convergence des formules d’interpolation entre ordennées equidistantes. [On the Convergence of Interpolation Formulas between Equidistant Orders]. Bulletin de la Classe des Sciences, Academie Royale de Belgique, 314-410.
[3] Wiener, N. (1924) The Quadratic Variation of a Function and Its Fourier Coefficients. Journal of Mathematical Physics, 3, 72-94.
https://doi.org/10.1002/sapm19243272
[4] Dudley, R.M. (1994) The Order of the Remainder in Derivatives of Composition and Inverse Operators for p-Variation Norms. Annals of Statistics, 22, 1-20.
https://doi.org/10.1214/aos/1176325354
[5] Dudley, R.M. (1997) Empirical Processes and p-Variation. In: Pollard, D., Torgersen, E. and Yang, G.L., Eds., Festschrift for Lucien Le Cam, Springer, New York.
https://doi.org/10.1007/978-1-4612-1880-7_13
[6] Dudley, R.M. and Norvaisa, R. (1999) Differentiability of Six Operators on Nonsmooth Functions and p-Variation. Lecture Notes in Math, 1703, Springer, Berlin.
https://doi.org/10.1007/BFb0100744
[7] Appel, J., Banas, J. and Merentes, N. (2014) Bounded Variation and around. De Gruyter, Boston.
[8] Chistyakov, V.V. and Galkin, O.E. (1998) On Maps of Bounded p-Variation with . Positivity, 2, 19-45.
https://doi.org/10.1023/A:1009700119505
[9] Diening, L. (2004) Maximal Function on Generalize Lebesgue Spaces Lp(x). Mathematical Inequalities & Applications, 7, 245-253.
https://doi.org/10.7153/mia-07-27
[10] Azroul, E., Barbara, A. and Redwane, H. (2014) Existence and Nonexistence of a Solution for a Nonlinear p(x)-Elliptic Problem with Right-Hand Side Measure. International Journal of Analysis, 2014, 1-15.
[11] Fan, X., Zhao, Y. and Zhao, D. (2001) Compact Imbedding Theorems with Symmetry of Strauss-Lions Type for the Space W1,p(x) Ω. Journal of Mathematical Analysis and Applications, 255, 333-348.
https://doi.org/10.1006/jmaa.2000.7266
[12] Yin, L., Liang, Y., Zhang, Q. and Zhao, C. (2015) Existence of Solutions for a Variable Exponent System without PS Conditions. Journal of Differential Equations, 2015, 1-23.
[13] Radulescu, V.D. and Repovs, D.D. (2015) Partial Differential Equations with Variable Exponent: Variational Methods and Qualitative Analysis. CRC Press, Taylor & Francis Group, Boca Raton.
[14] Orlicz, W. (1931) über konjugierte exponentenfolgen. [Over Conjugate Exponent Sequences]. Studia Mathematica, 3, 200-211.
[15] Nakano, H. (1950) Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo.
[16] Nakano, H. (1951) Topology and Topological Linear Spaces. Maruzen Co., Ltd., Tokyo.
[17] Musielak, J. (1983) Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0072210
[18] Musielak, J. and Orlicz, W. (1959) On Modular Spaces. Studia Mathematica, 18, 49-65.
[19] Kovácik, O. and Rákosník, J. (1991) On Spaces Lp(x) and Wk,p(x). Czechoslovak Mathematical Journal, 41, 592-618.
[20] Kozlowski, W.M. (1988) Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics. Marce Dekker Inc., New York, Vol. 122, 252.
[21] Castillo, R.E., Merentes, N. and Rafeiro, H. (2014) Bounded Variation Spaces with p-Variable. Mediterranean Journal of Mathematics, 11, 1069-1079.
https://doi.org/10.1007/s00009-013-0342-5
[22] Barza, S. and Silvestre, P. (2014) Functions of Bounded Second p-Variation. Revista Matemática Complutense, 27, 69-91.
[23] Mejía, O., Merentes, N. and Sánchez, J.L. (2015) The Space of Bounded p(⋅)-Variation in Wiener’s Sense with Variable Exponent.
[24] Matkowski, J. (2011) Uniformly Bounded Composition Operators between General Lipschitz Function Normed Spaces. Topological Methods in Nonlinear Analysis, 38, 395-405.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.